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Thus all human cognition begins with intuitions, goes from there to concepts,
and ends with ideas.

Kant, Critique of Pure Reason. (A702/B730)
Epigram to Hilbert (1899)

Abstract

In November and December 1915, Hilbert presented two communications to the Göttingen Academy
of Sciences under the common title ‘The Foundations of Physics’. Versions of each eventually appeared
in the Nachrichten of the Academy. Hilbert’s first communication has received significant reconsideration
in recent years, following the discovery of printer’s proofs of this paper, dated 6 December 1915. The
focus has been primarily on the ‘priority dispute’ over the Einstein field equations. Our contention, in
contrast, is that the discovery of the December proofs makes it possible to see the thematic linkage
between the material that Hilbert cut from the published version of the first communication and the
content of the second, as published in 1917. The latter has been largely either disregarded or
misinterpreted, and our aim is to show that (a) Hilbert’s two communications should be regarded as part
of a wider research program within the overarching framework of ‘the axiomatic method’ (as Hilbert
expressly stated was the case), and (b) the second communication is a fine and coherent piece of work
within this framework, whose principal aim is to address an apparent tension between general invariance
and causality (in the precise sense of Cauchy determination), pinpointed in Theorem I of the first
communication. This is not the same problem as that found in Einstein’s ‘hole argument’—something
that, we argue, never confused Hilbert.
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1. Introduction

In November and December 1915, Hilbert gave two presentations to the Royal
Göttingen Academy of Sciences under the common title ‘The Foundations of Physics’.
Distinguished as ‘First Communication’ (Hilbert, 1915b) and ‘Second Communication’
(Hilbert, 1917), two papers (or ‘notes’, as they are widely known) eventually appeared in
the Nachrichten of the Academy.1 The First Communication, which quickly entered the
canon of classical general relativity, has recently become the object of renewed scholarly
scrutiny since the discovery of a set of printer’s proofs (Hilbert, 1915a) dated 6 December
1915 (henceforth the ‘Proofs’).2 With the exception of Renn and Stachel (1999), the Second
Communication has not been given the same detailed reconsideration. However, the
analysis of the Second Communication by Renn and Stachel seriously misrepresents its
aims, content, and significance, and also its links to the First Communication. Our aim in
this paper is to show that Hilbert’s Second Communication is a natural continuation of his
First Communication, that it contains important and interesting further developments of
that project, and above all that it sheds needed illumination on Hilbert’s assessment of the
epistemological novelty posed by a generally covariant physics.

Hilbert’s notes on ‘Foundations of Physics’ traditionally have been assessed solely in
terms of the contributions they made to general relativity, as that theory is known in its
completed form.3 From this vantage point, they present a mixed record of achievement,
ranging from genuine insight (the Riemann scalar as the suitable invariant for the
gravitational action) through incomprehension (Hilbert’s interpretation of electromagnet-
ism as a consequence of gravitation) to abject failure (attachment to the untenable
electromagnetic theory of matter of Gustav Mie). The usual implication is that Hilbert’s
principal intent in November 1915 was to arrive at a theory of gravitation based on the
principle of general covariance in one blinding flash, masterfully wielding an arsenal of
axiomatized advanced mathematics. Thus arose ‘the legend of a royal road to general
relativity’ (Renn & Stachel, 1999, p. 1) through the axiomatic method, whilst Hilbert’s
reputed remark that ‘physics is much too difficult for physicists’ has been widely
understood to epitomize a haughty mathematical arrogance (Reid, 1970, p. 127).
Correspondingly, some historians of general relativity have concluded that Hilbert
‘attached a kind of metaphysical significance to variational methods’ (Rowe, 1999, p. 201),
while others have regarded Hilbert’s approach as evincing an optimistic demonstration of
the Göttingen-based ideology of a ‘pre-established harmony’ between mathematics and
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1English translations of these papers, as well as of Hilbert (1915a), are now available in Renn & Schemmel, Eds.
(2007). Unless otherwise noted, all translations in this paper are our own. For readability, equations have been
renumbered as necessary.

2Corry, Renn, & Stachel (1997); see e.g., Rowe (1999, 2001), Renn & Stachel (1999), Stachel (1999), Sauer
(1999), Vizgin (2001), Corry (2004), and Sauer (2005).

3A welcome exception is Corry (2004), who treats Hilbert’s notes as part of his program for the axiomatization
of physics.

K.A. Brading, T.A. Ryckman / Studies in History and Philosophy of Modern Physics 39 (2008) 102–153 103



physics (Pyenson, 1985).4 Finally, some have relished pointing out where Hilbert’s
elaborate mathematical constructions were either inadequate to the complexities of the
initial value problem in general relativity5 or simply led to hopelessly failed physics
(Stachel, 1992; Renn & Stachel, 1999, pp. 77, 81–83).
Our contention is that viewing Hilbert’s notes solely in terms of contributions

made to general relativity as that theory is canonically understood, radically occludes
internal motivations, which are largely logical and epistemological, and so casts
them in a misleading light. In so doing, the explicitly stated epistemological intent
of the ‘axiomatic method’ is willfully ignored, as are Hilbert’s own express assertions
regarding his construction as a triumph of that method. Although understandable
in terms of the intellectual small change of ‘textbook’ histories, such accounts overlook
or downplay fundamental philosophical and methodological differences with Einstein,
in emphasis as well as in detail, concerning the significance of general covariance,
arguably impeding clarification on that vexed issue for decades. But set within the
logical and epistemological context of the ‘axiomatic method’, Hilbert’s two notes
may be seen to have the common goal of pinpointing, and then charting a path toward
resolution of, the tension between causality and general covariance that, in the infamous
‘hole argument’, had stymied Einstein from 1913 to the autumn of 1915.6 Unlike
Einstein’s largely informal and heuristic extraction from the clutches of the ‘hole
argument’, Hilbert stated the difficulty in a mathematically precise manner as an
ill-posed Cauchy problem in the theory of partial differential equations, and then
indicated how it can be resolved. As we will show, material cut from the proofs
establishes this essential thematic linkage between the two notes and redeems Hilbert’s
claim that tension between causality and general covariance, precisely formulated in
Theorem I of the First Communication, was the ‘point of departure’ for his axiomatic
investigation.
Einstein and Hilbert were engaged in qualitatively different enterprises that only

partially overlapped. In contrast to Einstein, Hilbert’s goals were at least as much logical
and epistemological, according to the character of the axiomatic method, as they were
physical. We concur with the judgment of Felix Klein, who wrote, in 1921, that ‘there can
be no talk of a question of priority, since both authors pursued entirely different trains of
thought (and to be sure, to such an extent that the compatibility of the results did not at
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4To be sure, Hilbert occasionally voiced such sentiments in his lectures; e.g., noting the simplicity of the
Maxwell equations in four-dimensional formulation, and how appeal to the simplest differential invariants in
Einstein’s theory of gravitation yielded the accurate correction of Newton’s theory (regarding the precession of
Mercury’s perihelion), Hilbert remarked that such results gave ‘an impression of pre-established harmony. We
confront here the remarkable fact that apparently matter entirely obeys the formalism of mathematics. There
appears here a previously unsuspected agreement between being (Sein) and thought that we must provisionally
accept as a miracle’ (Hilbert, 1919–1920, p. 69). Hilbert’s acceptance was indeed provisional; a central concern in
the remainder of these lectures is to analyze and explain the ‘miracle’ from what would later be termed ‘the finite
point of view’ (die finite Einstellung). On the latter, see Section 8 below.

5As will be seen, Hilbert’s main concern is with the Cauchy problem of evolving the initial data forwards.
Hilbert also shows some concern for the problem of finding a suitable initial value hypersurface, but the problems
associated with then ensuring that the initial data, specified on such a surface, are consistent with the field
equations, have yet to become apparent (and will take some time to emerge in the study of Einstein’s general
theory of relativity). These problems are, of course, all related to one another (see Appendix A).

6See Norton (1984, pp. 286–291; 1993, y 1–3), Stachel (1993), and Ryckman (2005, y 2.2.2), for presentation and
discussion of the ‘hole argument’, and for additional references.
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once seem assured)’.7 For Hilbert, the principal outcomes arrived at by the axiomatic
method concern his revisiting the principle of causality, and his revisions of Kantian
epistemology, in the light of generally covariant physics.

The structure of our paper is as follows.
In Section 2 we present what we call ‘the essential context’: Hilbert’s axiomatic method

and its presupposition of central tenets of Kantian epistemology.
In Section 3, we briefly review the published version of Hilbert’s First Communication,

proceeding in Section 4 to emphasize differences in content between the December Proofs
and the published version. Since this subject has been extensively treated in Sauer (1999), in
Renn and Stachel (1999), and more recently in Corry (2004), our treatment will highlight
only the central features, omitting many details that can be found in these sources. We
shall see that a passage cut from the proofs elucidates the problem pinpointed by Theorem
I, and this, we claim, provides essential thematic linkage to Hilbert’s Second
Communication (see Section 6). Section 5 returns to the topic of the axiomatic method,
and examines the aims and achievements of this method as it appears in the First
Communication.

Section 6 concerns Hilbert’s Second Communication. Following a brief introduction, we
review the secondary literature, and then turn our attention to an exposition of the content
of the Second Communication. We see how Hilbert now sought to resolve the challenge
posed by Theorem I—the tension between general covariance and causality. We show that
Hilbert’s employment of the axiomatic method identified an epistemological novelty
emerging in generally covariant physics regarding the constitution of physical objectivity as
this is understood in a broadly transcendental idealist sense, most prominently displayed in
his subsequent remarks regarding the axiom of general invariance. In further addressing
the related matter of the vexing problem of causality in the new physics of general
covariance, deemed a ‘pseudo-geometry’ and not, as before, as field physics set within a
‘background geometry’, Hilbert sought to remove all global ‘pseudo-Euclidean’
presuppositions, equivalent to ‘action-at-a-distance’.

Armed with our new understanding of Hilbert’s ‘problem of causality’, Section 7
explains why this is not the same problem as Einstein faced in his ‘hole argument’.

In Section 8, we look beyond Hilbert’s 1915 and 1917 papers to consider his further
reflections on the epistemological significance of the respective principles of general
covariance and causality and the ground of Hilbert’s subordination of the latter to the
former. We explain in detail the revisions of Kant that Hilbert believed were required in
the face of the new generally covariant physics.

2. The essential context: Hilbert’s axiomatic method and Kantian epistemology

There are two pieces of context that we believe are crucial to correctly understanding
Hilbert’s treatment of generally covariant physics: his axiomatic method, and his appeal to
Kantian epistemology. These themes infuse our discussion throughout.

Hilbert’s First Communication opens with a declaration that his investigation of the
foundations of physics is undertaken ‘in the sense of the axiomatic method’ (‘im Sinne der
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7‘Von einer Prioritätsfrage kann dabei keine Rede sein, weil beide Autoren ganz verschiedene Gedankengänge
verfolgen (und zwar so, daX die Verträglichkeit der Resultate zunächst nicht einmal sicher schien)’. This remark
occurs in a note (p. 566, n. 8) added to the 1921 reprint of Klein (1917).
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axiomatischen Methode’), and it concludes with the striking claim that the results he has
obtained redound ‘certainly to the most magnificent glory of the axiomatic method’.
Unless these passages are mere rhetorical embellishment, they establish that the ‘axiomatic
method’ (whatever that may be) played an integral part in Hilbert’s work on the
foundations of physics. It is our contention that understanding the significance of Hilbert’s
setting his results squarely within the frame of ‘the axiomatic method’ is essential for
correctly interpreting his First and Second Communications.
What, then, is ‘the axiomatic method’? Einstein himself appears to have been somewhat

skeptical regarding Hilbert’s claims of the method’s intended significance, placing the term
in scare quotes in a notably sarcastic aside to Weyl.8 In the literature, it has been widely, if
tacitly, assumed that Hilbert’s references to ‘axiomatic method’ simply signal the
derivation of his 14 fundamental field equations, as well as several subsidiary theorems,
from two principal axioms.9 However, in Hilbert’s usage this term implicates not merely a
typical mathematical concern with the rigorous explicit statement of a theory, but rather
also connotes a specifically logical and epistemological method of investigation for
‘deepening the foundations’ of the theory. Hence, by invoking ‘the axiomatic method’,
Hilbert was calling attention to a specifically epistemological method of investigation of
mathematical theories (including those of physics) that he pioneered, and which he saw as
closely tied to the nature of thought itself.10

Any attempt to understand attribution of epistemological significance to the axiomatic
method must begin with Hilbert’s attitude toward geometry, which Hilbert always
regarded as a physical science (indeed, the paramount physical science), and which served
as a model for his treatment of physical axioms (Hallett & Majer, 2004, p. 66). In published
articulation, the ‘axiomatic method’ debuted in Hilbert’s classic Gauss–Weber Festschrift
essay, Grundlagen der Geometrie (1899). The epigraph to Hilbert’s essay has been little
noticed, yet is worth quoting in the original German, for it is Kant’s most concise
statement (see the discussion in Section 8) of how cognition arises from the distinct sources
of intuition, concepts, and ideas:

So fängt denn alle menschliche Erkenntnis mit Anschauung an, geht von da zu Begriffen
und endigt mit Ideen (A702/B730).

To consider the appropriateness of this passage, recall that in Grundlagen der Geometrie,
Hilbert presented a rigorous axiomatization of Euclidean geometry, beginning from the
famous initial posit (‘Wir denken unsy’) of a domain of three non-descript systems of
‘things’ (Dingen) which he termed ‘points’, ‘straight lines’, and ‘planes’. Of course, each
term (and the relations each enters into with the others) has a sense familiar from our
everyday experience of objects, and so empirical intuition supplies the basic facts of
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8Einstein to H. Weyl, 23 November 1916: ‘Certainly I’ll admit that finding the suitable (geeigneten) hypothesis,
respectively, Hamiltonian function [i.e., Lagrangian density], for the construction of the electron forms one of the
most important contemporary tasks of theory. But the ‘‘axiomatic method’’ can be of little help with this (kann
dabei wenig nützen)’ (Einstein, 1998, p. 366).

9E.g., Guth (1970, p. 84), Mehra (1974, pp. 26, 72, n. 145), Wightman (1976, p. 153), Pais (1982, p. 257): ‘Suffice
it to say that it was Hilbert’s aim to give not just a theory of gravitation but an axiomatic theory of the world’. As
we will see, the December Proofs contain three axioms.

10Hallett (1994, p. 162) quotes from Hilbert’s 1905 Summer Semester Lectures ‘Logische Principien des
mathematischen Denkens’, ‘The general idea of [the axiomatic method] always lies behind any theoretical and
practical thinking’.
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geometry subjected to the axiomatic treatment. In point of fact, Hilbert regarded the
axiomatization as ‘the logical analysis of our spatial intuition’.11 But for the purposes of
such an analysis, meanings of these terms are neither antecedently assumed nor primitively
defined; rather the terms are ‘implicitly defined’, i.e., such meaning as accrues to each term
within the axiomatic structure is acquired through the logical relations it enters into by
virtue of its occurrence in any of the five classes of axioms and in all ensuing theorems.
Accordingly, these geometric axioms compactly ‘express certain interrelated fundamental
facts of our intuition’.

In more general terms, and as Kant’s directive prescribes, the axiomatic method is
conceived as a logical analysis that begins with certain ‘facts’ presented to our finite
intuition or experience. Both pure mathematics and natural science alike begin with ‘facts’,
i.e., singular judgments about ‘something y already y given to us in representation
(in der Vorstellung): certain extra-logical discrete objects that are intuitively present as an
immediate experience prior to all thinking’.12 As the axiomatic method is characterized in
Hilbert’s Göttingen Winter Semester lectures in 1922/1923, analysis then determines the
concepts under which such given facts can be classified and arranged, and next attempts to
formulate the most general logical relations among these concepts, a ‘framework of
concepts’ (Fachwerk von Begriffen) crowned with the fewest possible number of principles.
These axioms are, as far as possible, independent of the particular intuitions (and so,
concrete facts) from which the process started (see immediately below). But in addition, by
subjecting the intuitively given data to logical analysis, the axiomatic method is concerned
to separate out and highlight the self-sufficiency of the mathematical subject matter (which
may then be developed autonomously), quite apart from any particular reference
associated with particular terms or relations. In this way, a separation is effected between
logical/mathematical vs. intuitional/experiential thought, even as the latter has thus been
arranged in deductive form. Indeed, it is just ‘the service of axiomatics’

to have stressed a separation into the things of thought (die gedanklichen Dinge) of
the (axiomatic) framework and the real things of the actual world, and then to have
carried this through.13

When applied to any theory covering a sufficiently known domain of facts, whether of
mathematics or natural science, the axiomatic method is a procedure of finding, for any
given proposition of the theory, the premises from which it follows. The epistemological
orientation of such a method is obvious, and indeed, it rigorously implements the more
general epistemological approach of regressive or analytic methods for isolating
and determining the most general basic propositions on which rest a given body of
knowledge.14 In each case, the aim is not, at least in the first instance, the discovery or
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11‘Die bezeichnete Aufgabe läuft auf die logische Analyse unserer räumlichen Anschauung hinaus’ (Hilbert, 1899,
p. 3).

12Hilbert (1922, p. 161, English trans., p. 1121). Of course, for Hilbert, the basic objects of number theory, the
positive integers, or rather the signs that are their symbolic counterparts, are given in a quasi-spatial, but not in
spatial or temporal, intuition.

13Hilbert Winter Semester 1922/1923 lectures Wissen und mathematisches Denken. Ausgearbeitet von Wilhelm
Ackermann. Mathematische Institut Göttingen. Published in a limited edition, Göttingen, 1988; as translated in
Hallett (1994, p. 167).

14This theme is taken up by Leonard Nelson (1928), an exploration of the ‘points of contact between critical
(i.e., Kantian) philosophy and mathematical axiomatics’ (in Hilbert’s sense). In a letter of 30 July 1918 (cited and
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recognition of new laws or principles, but the conceptual and logical clarification or
reconstruction of known ones (cf. Majer, 2001, p. 19). Finally, and as its culmination, the
axiomatic method is concerned to demonstrate that the axioms of the theory thus selected
possess three meta-logical properties or relations: of mutual consistency, independence,
and completeness.15 Combining all these aspects together, successful pursuit of the
axiomatic method leads to a ‘deepening of the foundations’ (Teiferlegung der Fundamente),
i.e., of the mathematical foundations, of any theory to which it is applied, and this, indeed,
is the overall objective.16

Two further considerations require emphasis. First, a theory axiomatized according to
the axiomatic method satisfies, according to Hilbert, the criteria of existence and truth
solely through a consistency proof, i.e., a demonstration of the mutual consistency of the
axioms and all their consequences. This was Hilbert’s view already in Grundlagen der
Geometrie (again, we recall that Hilbert always regarded geometry as a natural science)
when it became a well-known bone of contention with Frege (e.g., Corry, 2004, pp.
112–114). Yet the axiomatic method requires still more: that consistency obtain not only
with respect to the various axioms, but also (see below) with respect to the ‘conditions of
possibility of all conceptual knowledge and all experience’. In other words, all appearance
of conflict between the different contributions to scientific knowledge—intuitions,
concepts, ideas—should be removed, yielding a ‘complete agreement and most pleasant
harmony’ between the experiences of everyday life and ‘the most demanding sciences’.17

This emphasis on the compatibility between the different sources of knowledge is crucial
for understanding Hilbert’s project in the Second Communication (see Section 6, below).
Secondly, the mathematical axioms standing at the pinnacle of the Fachwerk von

Begriffen are not only general but also ideal: more precisely, they are regarded as ‘ideas’ in
Kant’s regulative sense, i.e., principles or ‘rules of possible experience’ possessing an
‘objective but indeterminate validity’ (A663/B691) but not a constitutive employment in
cognition (however, we will see in Section 8 that Hilbert’s revision of the Kantian account
of physical objectivity rejects a sharp constitutive/regulative distinction). According to the
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(footnote continued)
translated in Peckhaus, 1994, p. 104), Hilbert wrote to the Prussian Education Minister of his wish ‘above all to
propagate the connections between mathematics and philosophy’, naming as allies in this regard ‘among
philosophers y Husserl and Nelson [as] the two most prominent personalities, and to my mind, it is no accident
that these two had appeared on the mathematical soil of Göttingen’.

15Hilbert’s 1905 Summer Semester Göttingen lectures ‘Logische Prinzipien des mathematischen Denkens’ already
characterized the general idea of the axiomatic method as stressing the consistency, independence, and
completeness of an axiom system. See Peckhaus (1990), p. 59.

16Hilbert (1918, p. 407; English translation, p. 1109): ‘The procedure of the axiomatic method, as it is expressed
here, amounts to a deepening of the foundations of the individual domains of knowledge, just as becomes necessary
for every edifice that one wishes to extend and build higher while preserving its stability’.

17Lecturing in Summer Semester 1921 on the ‘Basic Ideas of Relativity Theory’ (Die Grundgedanken der
Relativitätstheorie), Hilbert stressed that the new conceptions of space, time, and motion of Einstein’s theory were
still compatible with ‘the traditional intuition’ of ‘everyday life, our practice and custom’: ‘Thus we have listed all
the essential features of the old conception of space, time, and motion. But y it is still absolutely necessary to
bring to mind how excellent this conception of spacetime has proved to be. As far as natural sciences and their
applications are concerned, we find that everything is based on this conception. And in this construction
everything fits together perfectly. Even the boldest speculations of physicists and astronomers are brilliantly
confirmed in the minutest detail so that one can say that the experiences of everyday life, our practice and custom,
the traditional intuition and the most demanding sciences were in complete agreement and most pleasant harmony
with each other’. As cited and translated in Majer (1995, p. 274).
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axiomatic method, in virtue of their ideality, and so severance from experience and
intuition, axioms can play at best a hypothetical role in cognition.

Perhaps Hilbert’s last published statement of his epistemological credo occurred in a
1930 paper entitled ‘Knowledge of Nature and Logic’. There, in the course of a discussion
of how modern science has led to the judgment that Kant had far overestimated the role
and extent of a priori elements in cognition, Hilbert nonetheless endorsed a conception
of such elements as ‘nothing more and nothing less than a basic point of view
(Grundeinstellung) or expression for certain unavoidable preconditions of thinking and
experience’.18 He concluded that what remains of Kant’s synthetic a priori is just this
‘intuitive a priori point of view’ that is presupposed in all theoretical concept construction
in mathematics and physics. But Hilbert stressed that this was in full agreement with the
basic tendency of Kantian epistemology:

Thus the most general and fundamental idea of Kantian epistemology retains its
significance: namely, the philosophical problem of determining that intuitive a priori
viewpoint (jene anschauliche Einstellung a priori), and thereby of investigating the
conditions of the possibility of all conceptual knowledge and of all experience.19

We discuss Hilbert’s own modifications of Kantian epistemology in Section 8, below. Now
we turn to the details of Hilbert’s First and Second Communications, and we return to the
topic of the axiomatic method in the context of physics in Section 5.

3. Hilbert’s First Communication on ‘The Foundations of Physics’ (published version)

According to the annotation on the published version of the paper, Hilbert’s First
Communication was presented at the 20 November 1915 session of the Royal Göttingen
Academy of Sciences. Traditionally, the date of submission was the only date appearing on
publications in the Nachrichten of the Academy (Rowe, 2001, p. 418). However, with the
discovery of the December Proofs in 1993 it was learned that the version submitted on 20
November differs considerably from that appearing in the published Nachrichten on 31
March 1916.20 In this section we outline the content of the First Communication, and
examine what was cut from the December Proofs. While this issue has been considered in
detail before (Sauer, 1999; Renn & Stachel, 1999; Vizgin, 2001), our purpose is rather
different. Our interest lies in comparing the content of the First Communication, and
especially what was cut from the Proofs, with what was published as the content of the
Second Communication. This enables us to see that the Second Communication treats in

ARTICLE IN PRESS

18Hilbert (1930, p. 961).
19While the intent of these remarks on Kant is apparently to emphasize Hilbert’s conviction that ‘outside of

deduction and experience, there is still a third source of cognition (Erkenntnisquelle)’, it is not particularly clear
from the text what is meant by ‘intuitive a priori viewpoint’. But elsewhere Hilbert describes this intuitive
viewpoint (anschauliche Einstellung) as ‘an a priori insight y that the applicability of the mathematical way of
reflection over the objects of perception is an essential condition for the possibility of an exact knowledge of
nature’, an epistemological position, Hilbert goes on to state, that ‘seems to me to be certain’ (‘Wissen und
mathematische Denken’, Göttingen Winter Semester 1922/1923 lectures. Ausgearbeitet von W. Ackermann.
Mathematische Institut Göttingen. Published in a limited edition, Göttingen, 1988. As cited and translated in
Corry, 2004, p. 429).

20Hilbert was sending offprints to colleagues in mid-February 1916; see Sauer (1999, p. 543, n. 74).
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detail an issue raised in the Proofs of the First Communication, but whose resolution
Hilbert was forced to revisit.

3.1. Hilbert’s aim

As legend has it, in November 1915, Hilbert engaged in a competition with Einstein
to arrive at the generally covariant field equations of gravitation. Certainly, there was
some sort of a ‘race’: no other term quite so well suits the frenzied activities of Einstein
and Hilbert in that month. But this can by no means have been Hilbert’s only aim. In
seeking a derivation of the field equations of gravitation from a variational principle,
Hilbert upped the ante in postulating a single generally invariant ‘world function’, a
Lagrangian for both the gravitational and the matter fields, from which the fundamental
equations of a pure field physics might be derived. In astonishing testimony to his
belief in the axiomatic method’s power to ‘deepen the foundations’ of a theory, this
objective is stated as the main aim in both published versions of Hilbert’s two
communications, and indeed is still posed as late as 1923 (Hilbert, 1915b, p. 395; 1917,
pp. 63–64; 1923, pp. 12–13).
The First Communication accordingly begins with a declaration that the investigations

of Einstein and Mie have ‘opened new paths for the investigation of the foundation of
physics’. Hilbert announced that his aim is to set up ‘in the sense of the axiomatic method’
(im Sinne der axiomatischen Methode—our emphasis) a new system of fundamental
equations of physics on the basis of two (or, three, in the Proofs) axioms ‘of ideal beauty’,
encompassing in a single theory both Einstein’s theory of gravitation and Gustav Mie’s
theory of matter.21 These two theories were, in 1915, clear candidates to be the
fundamental theories of physics.22 Expressing Einstein’s theory of gravitation in terms of
the 10 independent gravitational ‘potentials’ gmv, and providing a generally invariant
generalization of Mie’s theory expressed in terms of the 4 electrodynamic potentials qs,
Hilbert employed highly sophisticated mathematical techniques to draw out the
consequences of his two principal axioms, as we will see in more detail below. While
Hilbert’s ambitious maximum goal was neither attained nor attainable (solutions to the
non-linear generalized Maxwell equations were found to be physically untenable, i.e., not
corresponding to the particulate structure of matter), it is clear that Hilbert was
nonetheless extremely pleased with the outcome of his application of the axiomatic method
to conjoin the two theories. The triumphal language at the end of his First Communication
can be understood as expressing Hilbert’s great satisfaction with the illumination gained in
revealing unsuspected mathematical relations between the field equations for gravitation
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21See in particular the discussion of Mie’s theory in Corry (2004, pp. 299–315). Both Corry and Sauer (1999)
emphasize that Hilbert’s knowledge of Mie’s theory was in the form given to it by Born (1914).

22Einstein’s antipathy toward Mie’s theory of matter is well known. It also anteceded Hilbert’s reformulation of
Mie’s theory. Already in mid-August 1913 in a letter to Erwin Finlay Freudlich, Einstein referred to the Mie
theory as ‘fantastic’, remarking, ‘in my opinion, it has only a vanishing small inner probability’ (Einstein, 1993, p.
550). However, Sauer (2002, p. 231) notes (in response to related claims by Renn and Stachel as to the Mie
theory’s implausibility in 1915): ‘I do not think that the electromagnetic world view was unambiguously outdated
at the time and that you could not have had well-founded reasons to believe that speculations along the lines of
Mie’s theory would give you a reasonable theory of matter’. Indeed, the second (1923) edition of Von Laue’s
widely used treatise on general relativity still contains a 5-page section (y29) on Mie’s theory of matter in the
context of Einstein’s theory.
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and for electrodynamics. In what follows we sketch how this illumination was achieved in
his First Communication.

3.2. Schematic outline

The core of Hilbert’s approach lies in two axioms, which he states immediately after
some preliminary definitions.

Axiom I. (‘Mie’s Axiom of the World Function’). Hilbert proposed a variational argument
formulated for a ‘world function’ H,23 depending on the 10 gravitational potentials gmv,
their first and second derivatives, as well as the 4 electromagnetic potentials qs, and their
first derivatives:

d
Z

H
ffiffiffi
g
p

do ¼ 0 ðg ¼ det jgmnj; do ¼ dw1 dw2 dw3 dw4Þ. (1)

Axiom II. (‘Axiom of General Invariance’). The world function H is an invariant with
respect to arbitrary transformations of the ‘world parameters’ ws (s ¼ 1,2,3,4).

Hilbert’s use of the term ‘world parameters’ in place of the standard locution ‘spacetime
coordinates’ is instructive. As expressly stated in his Second Communication, and as Mie
noted that same year,24 it is intended to highlight the analogy Hilbert sought to draw
between the arbitrariness of parameter representation of curves in the calculus of
variations, and the arbitrariness of coordinates on a spacetime manifold. Hilbert was, of
course, a grand master of the calculus of variations, as this communication will
demonstrate. In both cases, objective significance will accrue only to objects invariant
under arbitrary transformation of the parameters, respectively, coordinates. As Hilbert
used precisely the same language of ‘world parameters’ also in the Proofs, this is prima
facie evidence that his views regarding the lack of physical meaningfulness accruing to
spacetime coordinates were already in place. Similarly, in both versions of the First
Communication Hilbert affirms that this axiom is

the simplest mathematical expression for the demand that the interconnection of the
potentials gmv and qs is, in and for itself, completely independent of the way in which
one designates the world points through world parameters (Hilbert, 1915a, p. 2;
1915b, p. 396).

Anticipating our later discussion (in Section 7) of Hilbert and the ‘hole argument’, we note
that in the 1924 republication of Hilbert’s two notes in Mathematische Annalen, the term
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23The term ‘world function’, while appearing in Mie (1912–1913) and reminiscent of Minkowski, was used by
Hilbert already in his 1905 lectures on Newtonian continuum mechanics; see Corry (2004, p. 152).

24Hilbert (1917, p. 61): ‘Just as in the theory of curves and surfaces an assertion for which the parameter
representation of the curve or surface has been chosen has no geometric meaning for the curve or surface itself, so
we must also in physics designate an assertion as physically meaningless (physikalisch sinnlos) that does not remain
invariant with respect to arbitrary transformation of the coordinate system’. Mie (1917, p. 599) also stressed this
analogy.
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‘world parameters’ has been dropped while the sentence has been reformulated explicitly in
terms of the physical meaninglessness of spacetime coordinates:

Axiom II is the simplest mathematical expression for the demand that the
coordinates in themselves have no manner of physical meaning, but rather represent
only an enumeration of the world points in such a way as is completely independent
of the interconnection of the potentials gmv and qs (Hilbert, 1924, p. 4).

Nonetheless, given what is surely a semantic equivalence between the two sentences, we
cannot agree with Corry’s assessment that this change (‘Hilbert now added a paragraph’)
represents a change ‘distancing [Hilbert] from the position that was variously insinuated in
his earlier versions’ (Corry, 2004, p. 401).
Before proceeding further Hilbert then stated, without proof, a theorem described as the

‘Leitmotiv of my theory’, whose content may be more briefly stated thus:

Theorem I. (‘Leitmotiv’). In the system of n Euler–Lagrange differential equations in n
variables obtained from a generally covariant variational integral such as in Axiom I, 4 of the n
equations are always a consequence of the other n$4 in the sense that 4 linearly independent
combinations of the n equations and their total derivatives are always identically satisfied.25

One of Hilbert’s principal claims is that, as a consequence of Theorem I, electromagnetic pheno-
mena may be regarded as consequences of gravitation. We discuss this claim in Section 3.3 below.
The theorem also gives rise to Hilbert’s ‘problem of causality’, which we discuss in Section 4.2.
Hilbert next turns to the derivation of the Euler–Lagrange differential equations from

his invariant integral, by differentiation of H with respect to the gmv and their first and
second derivatives. This yields (equations (4) and (5) in Hilbert’s numbering), on the one
hand, ten equations for the gravitational potentials,

q
ffiffiffi
g
p

H

qgmn $
X

k

q
qwk

q
ffiffiffi
g
p

H

qgmn
k

þ
X

k;l

q2

qwk qwl

q
ffiffiffi
g
p

H

gmn
kl

¼ 0, (2)

or, in Hilbert’s abbreviation,

½
ffiffiffi
g
p

H'mn ¼ 0 gmn
l ¼

qgmn

qwl
; gmn

lk ¼
q2gmn

qwl qwk

" #
,

while, on the other, differentiation of H with respect to the electromagnetic potentials qs

and their first derivatives yields four equations.26

q
ffiffiffi
g
p

H

qqh

$
X

s

q
qwk

q
ffiffiffi
g
p

H

qqhk

¼ 0, (3)
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25Hilbert (1915a, pp. 2–3; 1915b, p. 397). Later in the paper, Hilbert regards the invariant H as the additive sum
of two general invariants H ¼ K+L (see Section 4.1 below), where K represents the source-free gravitational
Lagrangian and L is the source term associated with the addition of matter fields (the electromagnetic field in
Hilbert’s theory). As Klein (1917, p. 481) first pointed out, there are therefore eight identities available; four
associated with K and four with L. According to Klein, the identities associated with L reveal that the
conservation laws of the matter field equations are consequences of the gravitational field equations, and he
concluded that they therefore ‘have no physical significance’. This redundancy in the field equations, a feature of
the generally invariant structure of the theory, prompted Hilbert’s interpretation of the electromagnetic equations
as a consequence of the gravitational equations, as discussed in Section 3.3.

26The form of equations (2) and (3) is trivially algebraically different between the Proofs and the published
version. Here we follow the published version. For ease of comparison with the text, we also follow Hilbert’s
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or

½
ffiffiffi
g
p

H'h ¼ 0 qhk ¼
qqh

qwk
ðh; k ¼ 1; 2; 3; 4Þ

" #
.

The 14 equations (2) and (3) are termed, respectively, ‘the basic equations of gravitation,
and electrodynamics or generalized Maxwell equations’. On the assumption that the
Mie theory rendered a viable theory of matter, these equations encompass the entirety of
fundamental physics.

The remainder of the paper concerns Hilbert’s treatment of energy, which includes his
demonstration of a connection between the phenomena of gravitation and of
electromagnetism. We turn to this issue now.

3.3. The connection between gravitation and electromagnetism

On the basis of Theorem I, Hilbert concluded that the four equations (3) are a
consequence of the 10 equations (2), such that, ‘in the sense indicated (in dem bezeichneten
Sinne), electrodynamic phenomena are effects of gravitation’ (1915a, p. 3; 1915b, p. 397). As
this claim is certainly not part of the standard lore of general relativity, it has repeatedly
come under severe criticism, most recently by Renn and Stachel (1999, pp. 36–41) and by
Corry (2004, pp. 336–337). However, we note that according to what Wheeler termed
‘already unified field theory’, it has been known for some time that, except for very special
conditions of certain null regions, the electromagnetic field is entirely determined by the
spacetime geometry, the curvature of spacetime as expressed by the Riemann tensor.27

Still, since Hilbert relied on a specialized treatment of matter and non-gravitational energy
stemming from Mie, we consider only Hilbert’s internal (to his own theory) justification for
this claim.28 For present purposes, we wish to highlight three results that Hilbert
demonstrates, by means of his axiomatic method:

( general invariance, or as we shall prefer to say, general covariance, is connected with the
gauge structure of electromagnetism;
( the electromagnetic energy tensor of Hilbert’s generally covariant theory yields that of

Mie in the special relativistic limit;
( the gravitational equations entail four mutually independent linear combinations of the

electromagnetic equations and their first derivatives.

In our opinion, the first and third of these results express one of the two central
outcomes reached by Hilbert, by means of the axiomatic method: for any theory which
seeks to combine generally covariant theories of gravitation and electromagnetism, there
follow strong restrictions on the form of the electromagnetic part of the theory as a
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(footnote continued)
non-standard designation of the electromagnetic potential as well as his practice of using roman letters as indices
for that potential and for the ‘world parameters’.

27Misner & Wheeler (1957), Geroch (1966). These papers follow up earlier results of Rainich. See, e.g., Rainich
(1925, p. 498): ‘It is often thought that the theory of curved spacetime (general relativity theory) accounts for
gravitation but does not account for the electromagnetic phenomena. This is not so’.

28Hilbert’s treatment of energy is discussed in detail in Sauer (1999, pp. 554–557).
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consequence of the structure of the gravitational part of the theory.29 However, we must
point out that Hilbert also regarded the second result, concerning the Mie tensor (see
immediately below), as a central achievement of his theory, and indeed a promising
indication of its general correctness.
The first of the above results is obtained as follows. Hilbert’s gravitational equations are

expressed as variational derivatives with respect to the metric (Hilbert 1915a, p. 11; 1915b, p. 404):

½
ffiffiffi
g
p

K 'mn þ
q
ffiffiffi
g
p

L

qgmn ¼ 0, (4)

where the first term is rewritten, in the published version but not in the Proofs, with the
crucial trace term (see Section 4.1 below),

½
ffiffiffi
g
p

K 'mn ¼
ffiffiffi
g
p

Kmn $
1

2
Kgmn

$ %
. (5)

Now L is a general invariant that is assumed to depend only on the gmv, the qs, and the
first derivatives qqs=qwl . Hilbert had previously shown that from Axiom II (the axiom
of general invariance) and a supporting theorem (Theorem II, the Lie derivative
of the metric), it follows that L must satisfy the relations (Hilbert, 1915a, p. 10; 1915b,
p. 403):

qL

qqsk

þ
qL

qqks

¼ 0. (6)

Thus, even though the Mie theory assigns ‘absolute’ values (a fixed gauge) to the
electrodynamic potentials qs, the matter Lagrangian L in Hilbert’s theory depends only on
the antisymmetrized derivatives of the qs

Mks ¼ RotðqsÞ ) qsk $ qks, (7)

that is, on the electromagnetic field tensor. Only by additional assumption is this also
the case with Mie’s original theory but, of course, that theory is not generally invariant
(Born, 1914, p. 28). As Hilbert did not fail to observe, this is a necessary condition for
recovering Maxwell’s theory. Hilbert has thus shown that the gauge structure of electro-
magnetism follows from general covariance and the other assumptions for L, summarizing
in italic type:

This result [, on which the character of Maxwell’s equations depends,] follows here
essentially as a consequence of general invariance, hence on the basis of Axiom II.
(Hilbert, 1915a, p. 10; 1915b, p. 403. The bracketed expression does not appear in the
Proofs.)

The assumption that nothing else beyond the gmv (but no derivatives of the metric),
the qs, and the so-constrained first derivatives qqs=qwl enter into L, is certainly crucial
to this result, and is fully in line with Mie’s hypothesis that no matter field quantities
of non-electromagnetic nature appear in L (Born, 1914, pp. 24–25). It also has
consequences for the interpretation of the energy-momentum tensor Tmv in Hilbert’s
theory. Since all non-gravitational energy/matter is contained in L, it is entirely sufficient
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29Hilbert’s considerations on the tension between general covariance and causality (see Section 4.2 below) are
the other central outcome.
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for forming Tmv, i.e.,

q
ffiffiffi
g
p

L

qgmn ¼
ffiffiffi
g
p

Tmn. (8)

In this respect, Hilbert’s gravitational field equations (modulo the considerations of
Section 4.1 below), while having the same form as Einstein’s

Rmv $
1

2
gmvR ¼ wTmv, (9)

do not have the same interpretation, because Hilbert assumed a particular hypothesis
about the electromagnetic constitution of all matter (Earman & Glymour, 1978, p. 303;
Sauer, 1999, p. 564). Given this interpretation of Tmv, Hilbert is then able to show that the
matter tensor of his theory yields the electromagnetic energy tensor of Mie’s theory in the
special relativistic limit (see Sauer, 1999, p. 555). This is also a fundamental result, and
Hilbert here underlined its significance in print with Sperrdruck type:

Mie’s electromagnetic energy tensor is nothing other than the generally invariant tensor
obtained by derivation of the invariant L with respect to the gravitational potentials gmv

in the [special relativistic] limit—a circumstance that first indicated to me the
necessary close connection between Einstein’s general theory of relativity and Mie’s
electrodynamics, and which convinced me of the correctness of the theory developed
here (Hilbert, 1915a, p. 10; 1915b, p. 404).30

As Pauli (1921, y55) observed, this is the first demonstration of the now-familiar fact that
the energy-momentum tensor of matter (though specialized by Hilbert to Mie’s theory) can
be obtained by varying the matter Lagrangian with respect to the metric. Moreover, it
must be remembered that this ‘necessary close connection’ between the two theories has
been established through the axiomatic method, and so will count toward the triumph of
that method as proclaimed by Hilbert at the end of his paper.

Finally, Hilbert demonstrated the connection between the field equations of gravitation
and electromagnetism. Using the Lagrangian form of his gravitational equations in
conjunction with a version of the contracted Bianchi identities derived in his Theorem III
(and which follow from Theorem I), Hilbert arrives at four linearly independent identities
containing the Euler derivative associated with the electromagnetic equations,

X

m

Mmn½
ffiffiffi
g
p

L'm þ qn
q

qwm
½
ffiffiffi
g
p

L'm

$ %
¼ 0; (10)

where we recall that

½
ffiffiffi
g
p

L'h ¼ 0 (11)

are the abbreviated Lagrangian form of the electromagnetic field equations (Hilbert,
1915a, p. 10; 1915b, p. 406; for discussion, see Sauer, 1999, pp. 556–557). Thus, Hilbert has
shown that the gravitational field equations in conjunction with the postulate of general
invariance yield four mutually independent combinations of the electromagnetic field
equations and their first derivatives. This is the sense in which the electromagnetic
phenomena are consequences of the gravitational. Referring back to the assertion that he
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30Note that already in the Proofs, Hilbert referred here to ‘Einstein’s general theory of relativity’ (der
Einsteinschen allgemeinen Relativitätstheorie), explicitly according due credit to Einstein.
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made following his statement of Theorem I, Hilbert immediately claimed, in italic type for
emphasis:

This is the entire [exact] mathematical expression of the above generally stated
assertion concerning the character of electrodynamics as an accompanying phenomenon
(Folgeerscheinung) of gravitation. (1915a, p. 12; 1915b, p. 406, with indicated word
change in brackets.)

We wish to stress that Hilbert clearly viewed this result, as well as the just-mentioned
recovery of Mie’s tensor in the special relativistic limit, as central achievements of his
theory. Neither of these has to do with the explicit formulation of the generally covariant field
equations of gravitation.31 Of course, Hilbert’s interpretation of the significance of Theorem
I rests on the special choice of H (and L), and the related assumption of the
electromagnetic constitution of matter that furnishes the definition of Hilbert’s energy-
momentum tensor above. However, the use of these assumptions is entirely in line with
Hilbert’s purpose: that of applying the axiomatic method to the current state of physics.
Vizgin, calling attention to the fact that Hilbert’s remark that Theorem I was the ‘guiding
theme (Leitmotiv) for the construction of my theory’, correctly observes:

Thus Hilbert’s ‘Theorem I’ a special case of Noether’s second theorem, made it
possible to regard the equations of electrodynamics as consequences of the
gravitational field equations (Vizgin, 1994, pp. 58–59).32

The chosen modality ‘made it possible to regard’ must be emphasized, in light of the
assumptions under which Hilbert reached this conclusion.
In essence, although formulated more broadly for any generally invariant theory,

Theorem I affirms very clearly, and for the first time, a property of general relativity that is
now well known and is indeed associated with Noether’s second theorem (Noether, 1918),
although this is not always explicitly stated. As recognized in Einstein’s canonical 1916
paper on general relativity, by virtue of the requirement of general covariance ‘the field
equations of gravitation contain four conditions which govern the course of material
phenomena’. ‘These give’, continued Einstein (in this paper, completed in March 1916),
‘the equations of material phenomena completely, if the latter is capable of being
characterized by four differential equations independent of one another’. In justification of
this assertion, Einstein gave an explicit reference to Hilbert’s First Communication, and
presumably to the page on which appears Theorem I.33

Since Einstein was, presumably, aware of Hilbert’s declaration that this theorem was the
‘guiding motivation’ (Leitmotiv) of his construction, we can hardly agree with the
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31Rowe (2001, p. 404) observes that it was ‘microphysics not gravitation that Hilbert saw as the central problem
area’. We broadly agree that gravitation was not Hilbert’s primary focus.

32However, in view of the just given derivation, we do not agree with Vizgin’s subsequent analysis (pp. 61 ff)
that Hilbert’s choice of just which 4 equations followed from the other n$4 (according to Theorem I) was
arbitrary.

33Einstein (1916a), in the Parret and Jeffrey translation, p. 151. In the original text (1916a, p. 810; reprinted
1996, p. 325), Einstein referred to page 3 of Hilbert (1915b); as Sauer (1999, p. 544, note 74) observes, the offprints
of this article had pagination beginning with 1. A note in the (1996) text tells us that Einstein’s reference should be
page 395 (the first page) of the published version. In fact, Theorem I appears on page 397 of that version. See
Janssen & Renn (2007) on Einstein’s prior use of variational techniques and his recognition that energy
conservation is connected with the four identities.
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assessment of Rowe (2001) that this sole reference to Hilbert’s work in Einstein’s canonical
exposition of his theory in 1916 is evidence that ‘Einstein y could afford to virtually
ignore Hilbert’s papery’ (p. 412). Nonetheless, the significance of the four identities
associated with Noether’s second theorem only gradually became established in the
literature on general relativity. The Noether identities lead directly to the contracted
Bianchi identities, which in the modern view are most often interpreted geometrically
(e.g., Trautman, 1962). The Bianchi identities can also be understood as four conditions on
the matter-energy-momentum tensor, interpreted as a generalization of the differential
energy-momentum conservation laws of matter in the presence of a gravitational field. It
was in just this way that the identities associated with Noether’s second theorem were
interpreted by Pauli in his classic monograph on the theory of relativity (Pauli, 1921, y55).

4. Comparison of the Proofs with the published version of the First Communication

Felix Klein is reported to have commented on the ‘completely disordered’ character of
Hilbert’s First Communication, remarking that it was ‘evidently a product of great
exertion and excitement’).34 We do not know whether Klein was referring to the Proofs or
the published version, or perhaps to both, but there is evidence that Klein and Einstein
each encountered considerable difficulty in understanding Hilbert’s highly formalistic
treatment of energy in the published version.35 In any case, both versions affirm the overall
significance of the project as an application of the axiomatic method, and both agree on
the main results that follow from this application. As we have already noted, in our
opinion, these results are two: (1) showing that for any theory which seeks to combine
generally covariant theories of gravitation and electromagnetism, there follow strong
restrictions on the form of the electromagnetic part of the theory as a consequence of the
structure of the gravitational part of the theory (see Section 3.3), and (2) pinpointing a
puzzling issue concerning the nature of causality (see Section 4.2) in the new physics of
general invariance.

The main differences between the versions are twofold. First, there is the absence in the
Proofs of the explicit form of the field equations (see Section 4.1, below), and secondly, there
is the absence in the published version of both a clear statement of the problem of causality as
well as the solution that appears in the December Proofs (Section 4.2, below). It is the first of
these differences that has received considerable attention in the recent literature, and within
this there is one point that bears directly on the interpretation of Hilbert’s project, which we
wish to particularly emphasize. The second difference has been largely neglected, but is—as
we shall argue—of crucial importance to the interpretation of the Second Communication.

4.1. Einstein’s field equations

The Proofs bear a printer’s stamp of 6 December 1915. The published version bears the
date of 20 November 1915 as the date of its submission to the Nachrichten of the Royal
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34Klein, Göttingen Lecture Notes, 10 December 1920 (Klein NachlaX XXII C, p. 18), as cited and translated in
Rowe (2002, p. 61).

35See Klein (1917) for his ‘simplification’ (Vereinfachung) of Hilbert’s treatment; for discussion, see Rowe (1999,
pp. 212–213) and Brading (2005). For Einstein’s difficulties, see the letters of Einstein to Hilbert of 25 and 30 May,
and 2 June 1916, and Hilbert to Einstein of 27 May 1916 (Einstein, 1998, pp. 289–295).
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Göttingen Academy of Sciences: this is five days before Einstein presented the final form
of his generally covariant gravitational field equations to the Prussian Academy in Berlin.
As finally published on 31 March 1916, Hilbert’s First Communication identifies the
gravitational part of his ‘world function’ as the Riemannian curvature scalar density (on
which all modern treatments agree) and provides a derivation from a variational principle
of what are essentially the same (with the qualifications of Section 3.3 above) generally
covariant gravitational field equations as those of Einstein. However, in the Proofs these
equations, also based on the Riemann scalar, as well as Hilbert’s electrodynamic
equations, appear only in their Euler–Lagrange variational form. In contrast, the fully
covariant gravitational equations occur explicitly in Einstein’s 25 November presentation
to the Prussian Academy, appearing in print already on 2 December.
The attention to dates is not mere pedantry for it raises a number of questions,

including whether, as several scholars have recently alleged, or insinuated, the Proofs
provide evidence of Hilbert’s ‘nostrification’ of Einstein’s final results,36 and even of
unethical behavior on Hilbert’s part. More important, for our purposes, is the
claim in Renn and Stachel’s analysis that prior to the publication of Einstein’s field
equations, Hilbert’s research program, as represented in the Proofs, essentially combined
Einstein’s earlier non-covariant Entwurf theory of gravitation with Mie’s theory.37 We
reject this claim, and are at pains to do so since the requirement of general covariance (or
general invariance, in Hilbert’s terminology) is utterly fundamental to Hilbert’s
approach—it is the cornerstone of the epistemological framework within which both
his First and Second Communications are formulated. To consider general covariance
as ‘optional’ for Hilbert is to gravely misunderstand and misrepresent his project (see
Section 8, below).
In support of our position, and against that of Renn and Stachel, we compare the

following aspect of the published version and the Proofs. In the published version, Hilbert
identifies his world function as composed of two additive parts,

H ¼ K þ L, (12)

the gravitational and matter components (see note 25 above). In the 1924 republication of
this paper, this supposition is stated as an additional Axiom (III) further specifying the
world function. However, in the Proofs, some text is missing containing an equation
numbered (17). The above specification occurs at the corresponding place in the published
version, and so was almost certainly contained in the Proofs (Sauer, 2005). Now in both the
Proofs and the published version, K is identified, without proof, as the only scalar invariant
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36In a widely cited letter of 26 November 1915, Einstein complained to his friend Heinrich Zangger in Zurich,
that ‘only one colleague has actually understood’ his new theory and that person had ‘sought to ‘‘nostrify’’
(nostrofizeren) it ([Max] Abraham’s expression) in a clever way’—a clear reference to Hilbert (Einstein, 1998, pp.
204–205). Corry (2004, pp. 99, 419–422), however, observes that this term is ‘ambivalent and subtle’, and notes
that it was ‘widely used’ to describe the appropriation of existing ideas by Hilbert and his students or
collaborators in the axiomatic or mathematical treatment of a given discipline. This seems right to us. Einstein’s
complaint would seem not so much to be over the ‘priority question’ but rather with the use Hilbert made of
certain of Einstein’s ideas (such as treating the metric tensor as gravitational potentials) in tying gravitational
theory to Mie’s theory of matter. In any case, Einstein and Hilbert were quickly again on good terms; see
Einstein’s letter to Hilbert of 20 December 1915 (Einstein, 1998, p. 222).

37Renn & Stachel (1999, p. 35), Stachel (1999, p. 359). To the contrary, we concur with Sauer (1999, p. 547):
‘Hilbert had probably realized that his theory in any case implied field equations which differed from the ones of
Einstein’s Entwurf theory or from those put forward in Einstein’s first November communication’.

K.A. Brading, T.A. Ryckman / Studies in History and Philosophy of Modern Physics 39 (2008) 102–153118



depending only on the gmv and its first and second derivatives (Hilbert, 1915a, p. 8; 1915b,
p. 402). With some charitable latitude, this permits its identification as the Riemann
curvature scalar, K ¼ gmnKmn, where Kmv is the Ricci tensor.38 As noted above, the
gravitational field equations then appear several pages later in the Proofs as Lagrangian
derivatives (Eq. (4)):

½
ffiffiffi
g
p

K 'mn þ
q
ffiffiffi
g
p

L

qgmn ¼ 0.

As the derivation begins with a generally invariant world function, and since Lagrangian
differentiation with respect to the metric is a covariant operation, Hilbert’s gravitational
equations (26) are generally covariant not only in the published version but also already in
the Proofs.39

In the published version, but not in the Proofs, Hilbert noted that ‘it follows easily
without calculation’ (1915b, 405) that (Eq. (5)):
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.

The appearance of the explicit form of the field equations in the published version,
including the crucial ‘trace’ term, occurs in conjunction with Hilbert’s removal of the
intricate non-covariant energy theorem that he constructed in the Proofs (see Section 4.2,
below). This latter change indicates Hilbert’s realization that no restriction on the
spacetime coordinates is required for energy-momentum conservation, and indeed Einstein
pointed out in his 25 November paper that energy-momentum conservation is a
consequence of his generally covariant field equations. Since so much of the text of the
Proofs was devoted to constructing the non-covariant energy theorem, Corry, Renn, and
Stachel (1997) allege that ‘knowledge of Einstein’s result may have been crucial to Hilbert’s
introduction of the trace term into his field equations’ (p. 1272). However, we think this—
and the implications that Corry, Renn, and Stachel draw from it—must be taken with a
grain of salt for, on the one hand, Sauer has shown that the calculation of the Einstein
tensor (containing the trace term) follows rather naturally from Hilbert’s assumptions and
his Theorem III, which essentially recovers the contracted Bianchi identities.40 In fact,
Hilbert presented an explicit calculation only in the edited 1924 republication of the papers
(1915b) and (1917) in the Mathematische Annalen.41 On the other hand, viewing Hilbert’s
axiomatic construction as a whole, we do not believe that an explicit evaluation of the
gravitational field equations in tensor form was a particularly important goal of that
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38Hilbert failed to state that the identification as the Riemann scalar requires that K contains the second
derivatives of gmv only linearly, for reasons presumably known to Hilbert but clearly amplified by Landau &
Lifshitz (1975, p. 268). Rowe (2001, pp. 417–418) argues that Hilbert relied on a bit of local Göttingen
‘mathematical folklore’ regarding differential invariants. An explicit proof, but under the assumption of the
positive definiteness of the metric, is given in Weyl (1921, Appendix 2; English trans., pp. 315–317). Both Rowe
and Weyl credit the result to a paper by Felix Klein’s assistant Hermann Vermeil (1917). On the latter’s
contribution, see Sauer (2005).

39This has been particularly emphasized by Sauer (1999, p. 547).
40Sauer (1999, p. 564): ‘The argument may not follow so easily without calculation but is nonetheless true if it is

understood that the second derivative of the metric tensor enters only linearly and if the condition is taken into
account that the combination of Kmv and gmnK has to satisfy the contracted Bianchi identityy derived in Hilbert’s
Theorem III’.

41For discussion of editorial changes in the 1924 republication, see Renn & Stachel (1999, pp. 64–65).
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project. Indeed, we think that the weight of evidence agrees with Corry’s (2004, p. 403)
assessment that

Hilbert arrived at general relativity in a roundabout way, while pursuing a much
more general aim: a unified, axiomatic foundation for all of physics.

So even though the explicit generally covariant form of the field equations does not appear
in the Proofs, nevertheless—as already noted—Hilbert’s gravitational field equations as
given implicitly there in terms of his Lagrangian are generally covariant.

4.2. Hilbert’s target: the ‘problem of causality’

Both the Proofs and the published version of the First Communication contain Hilbert’s
Axiom I (the ‘world function’, containing the gravitational and electromagnetic
potentials), his Axiom II (of general covariance, or ‘general invariance’ in Hilbert’s
terminology), and his Theorem I. In both versions Hilbert declares that Theorem I is the
‘Leitmotiv’ of his theory, thereby indicating that it is his principal concern. In the Proofs,
but not in the published version, Hilbert explicitly spells out the implications of Theorem I
for his system of fundamental equations of physics (1915a, pp. 3–4):

Our mathematical theorem teaches that the above axioms I and II can yield for the
14 potentials only 10 equations essentially independent of one another. On the other
hand, by upholding general invariance, no more than 10 essentially independent
equations for the 14 potentials gmv, qs, are possible at all. Therefore, if we want to
preserve the determinate character of the fundamental equations of physics
according to Cauchy’s theory of differential equations, the requirement of four
additional non-invariant equations supplementing (2) and (3) is essential.

Thus, independent of the physical validity of his system of fundamental equations, for
which he adduced no evidence whatsoever, Hilbert clearly underscored his interest in the
fact that the mathematical underdetermination in question (10 independent equations for
14 potentials) is solely a consequence of his axiom of general invariance as applied to the
potentials stated in Axiom I.
As befits its preeminent concern with the consistency of all axioms and assumptions

undergirding a theory, the axiomatic method has revealed an apparent tension between
general covariance and causality in the sense of a failure of univocal determination, a
conflict characterized in terms of whether any theory satisfying Axioms I and II admits of a
well-posed Cauchy problem.42 Theorem I suggests that it is a property of any such theory
that it does not.43 The Cauchy problem, for a system of second-order partial differential
equations, is to show that from given initial data assignments to the unknown field
functions and their first (time) derivatives in a bounded region, the initial data yield unique
solutions to these equations as far as possible from that region (the region’s ‘domain of
dependence’). For field theories formulated in spacetime, the initial data are formulated on
a given spacelike hypersurface S, and the essential problem is that of showing that the field
equations determine the second time derivatives of the given field quantities. As Hilbert
repeatedly emphasized, in all physics prior to general relativity (i.e., in all prior theories
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42See Appendix A for a sketch of the Cauchy problem in general relativity.
43We discuss Hilbert’s analysis in relation to Einstein’s ‘hole argument’ in Section 7 below.
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admitting a variational formulation), Cauchy determination required that there be
precisely as many independent equations as there are independent functions to be
determined. However, the situation is complicated in a generally covariant spacetime
theory by the freedom to make arbitrary coordinate transformations (equivalently,
diffeomorphic point transformations) of solutions to the field equations. As stipulated for
a generally invariant Lagrangian by Hilbert’s Theorem I, this is the fact that not all the
Euler–Lagrange equations obtained by variation of the integral invariant with respect to
the field quantities and their derivatives are independent. More precisely, 4 of these are
always the result of the remaining n$4 spacetime equations. Thus, Theorem I is a precise
mathematical statement of the tension between the postulate of general covariance and the
requirement of causality in the mathematical sense of univocal determination.

Notice that univocal causal determination—in the sense required by a well-posed
Cauchy problem—is not an axiom in Hilbert’s construction. Nevertheless, it is a
requirement satisfied by all previous field theories, and so its seeming failure in the context
of general invariance surely sparked Hilbert’s interest, a topic to which we turn in Section
7. But as we have repeatedly stated, in our opinion this is one of the two central outcomes
that Hilbert reached by means of the axiomatic method: any generally covariant theory
raises deep questions about causality, in both the mathematical and (as we shall see) the
physical sense.

Hilbert’s diagnosis in turn marked out a strategy for resolving the apparent tension
between general covariance and failure of univocal determination: to find, if possible,
four equations additional to the 10 independent equations that will render the
Cauchy problem well posed. Finding the ‘four additional non-invariant equations’
is the motivation behind the intricate mathematical construction in the Proofs of an
‘energy form’:

E ¼
X

s

esp
s þ
X

s;l

el
sp

s
l . (13)

Here es is termed the ‘energy vector’, and ps is an arbitrary contravariant vector. We have
used Hilbert’s notation: there is no summation convention in use, and the subscript indices
indicate coordinate derivatives. The ‘energy form’ is constructed from the tensor densityffiffiffi

g
p

PgH, where Pg is a differential operator on the world function H. A prime
consideration both here, and in the different treatment of energy in the published version,
will be to recover Mie’s energy tensor as a special case (see below). Hilbert found four
supplementary equations by re-writing his ‘energy form’ to include an expression whose
vanishing would correspond ‘to the energy theorem of the old theory,

X

i

qel
s

qwl
¼ 0, (14)

and then requiring that, for special spacetime coordinates wk adapted to this ‘energy
theorem’, the theorem holds.44 Accordingly, the ‘energy theorem’ is not generally
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44We rewrite the energy form as E ¼
P

sesp
s þ
P

s;l ðq=qwlÞðel
sp

sÞ þ
P

s;lp
sðqel

s=qwlÞ, and discard the divergence

term to arrive at E ¼
P

sesp
s þ
P

s;lp
sðqel

s=qwlÞ. Hilbert then notes that the ‘energy theorem’ holds iff es ¼ 0,

which in turn holds iff ðd ðgÞ ffiffiffigp H=dwsÞ ¼ 0. Notice that it is the coordinate derivative of
ffiffiffi
g
p

H that vanishes when

the ‘energy theorem’ holds, not the covariant derivative.
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covariant, and Hilbert used it to supplement the generally covariant field equations, as
stated in a third, and final, axiom appearing only in the Proofs:

Axiom III. (‘The Axiom of Space and Time’): ‘The space-time coordinates are such
particular world parameters for which the energy theorem (14) is valid’.

Elucidating this result, Hilbert clarified the main point, that these four non-covariant
equations complete the system of fundamental equations of physics (1915a, p. 7):

On account of the same number of equations and of definite potentials, the causality
principle for physical happenings (Geschehen) is also ensured, and with it is unveiled
to us the narrowest connection between the energy theorem and the principle of
causality, in that each conditions the other.

The idea that satisfaction of energy conservation (the energy theorem (14)) requires four
non-covariant equations is almost certainly taken from the Einstein and Grossmann
Entwurf theory (1913),45 where four non-generally covariant equations ensure energy
conservation by restricting the covariance class of the field equations. But Hilbert’s rather
more complicated construction has, philosophically and motivationally, a different raison
d’être. We thus reject the view of Renn and Stachel (1999, p. 73) who regard Hilbert’s
energy construction, intended to restore causality, as his ‘Proofs argument against general
covariance’. Rather, Hilbert’s four non-generally covariant equations ensuring energy
conservation are used to extract a Cauchy-determinate structure within an otherwise
generally covariant theory (and not to abandon general covariance).46,47 We return to this
in our discussion of the ‘hole argument’, below (Section 7).
As it happened, the very complex mathematical derivation in the Proofs leading to

Hilbert’s four energy equations was cut, together with all of its motivation, from the
published version. The reason is that, in the light of Einstein’s 25 November presentation
of his field equations to the Berlin Academy (Einstein, 1915), this turned out to be the
wrong approach for solving the tension between general covariance and Cauchy-
determination. Hilbert dropped it altogether, significantly modifying and truncating his
treatment of energy. There—consistent with the implicitly generally covariant energy in
Einstein’s treatment of 25 November—Hilbert derived a generally covariant ‘energy
equation’ which anyway is consonant with the ‘trace’ term in the gravitational field
equations popping out through explicit calculation from their Lagrangian derivatives.
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45Renn & Stachel (1999, p. 32) report Einstein’s conviction ‘[e]ven before Einstein developed the hole
argument’, that energy-momentum conservation requires such a restriction.

46This is also pointed out by Sauer (2005, n. 5): ‘Hilbert kept the generally covariant field equations as
fundamental field equations and only postulated a limitation of the physically admissible coordinate systems’. Yet
Sauer does not make enough of this, we think. Earlier in his text he writes that Hilbert’s Axiom III is a restriction
of the general covariance of Hilbert’s theory, there seeming to subscribe to the view that Hilbert followed Einstein
in seeking to limit the covariance of his theory.

47As Sauer (2005, n. 5) observes, Janssen & Renn (2007) reserve the terminology ‘coordinate restrictions’ to
apply to Einstein’s use of energy conservation whereby the covariance properties of the fundamental field
equations themselves are restricted. Hilbert’s use differs significantly, in implying no such restriction on the
covariance properties of the field equations, and we therefore use the terminology of ‘coordinate conditions’ in our
discussion of Hilbert. Thus, Hilbert used the four energy equations stated in his energy theorem (15) to impose
coordinate conditions on the generally covariant field equations. However, as Sauer also notes, Hilbert’s conditions
in the Proofs differ from the modern understanding of coordinate conditions since all applications of the field
equations require their satisfaction.
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Nevertheless, the issue of causality in a generally covariant theory doesn’t go away for
Hilbert. We claim that the Second Communication contains his much revised, and lengthy,
reconsideration of this issue, and that the entirety of this paper is rightly understood only
in this light.48

5. The First Communication and the axiomatic method

We recall that the task of the axiomatization of physics was the sixth in the famous list
of 23 mathematical problems Hilbert posed at the International Congress of Mathema-
ticians in Paris in 1900.

The investigations on the foundations of geometry suggest the problem: To treat in
the same manner, by means of axioms, those physical sciences in which mathematics
plays an important part y. If geometry is to serve as a model for the treatment of
physical axioms, we shall try first by a small number of axioms, to include as large a
class as possible of physical phenomena, and then by adjoining new axioms to arrive
gradually at the more special theories. y As he has in geometry, the mathematician
will not merely have to take account of those theories coming near to reality
(Wirklichkeit), but also of all logically possible theories. He must be always alert to
obtain a complete survey of all conclusions derivable from the system of axioms
assumed. Further, the mathematician has the duty to test in each instance whether
the new axioms are compatible with the previous ones. The physicist, as his theories
develop, often finds himself forced by the results of his experiments to make new
hypotheses, while he depends, with respect to the compatibility of the new hypotheses
with the old axioms, solely upon these experiments or upon a certain physical
intuition, a practice which is not admissible in the rigorously logical building up of a
theory. The desired proof of the compatibility of all assumptions seems to me also of
importance, because the effort to obtain such a proof always forces us most
effectively toward an exact formulation of the axioms (Hilbert, 1901; English trans.
Gray, 2000, pp. 257–258).

Inclusion of the axiomatization of physics among the other purely mathematical
problems on his list appears rather incongruous until Hilbert’s lifelong interest in
physics is taken into account.49 For our purposes, there are three items of interest in this
passage.

( As noted in Section 2, geometry is regarded as a model for the axiomatization of
physical theories.
( In axiomatizing, the mathematician is to take account of ‘all logically possible theories’,

not just phenomenological theories ‘near to reality’, and so the axiomatic method is
ideally suited for setting up a speculative theory from whose common basis both
gravitational and matter fields might arise.
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48The topic of energy-momentum in general relativity did not go away: it was the subject of ongoing discussions
between Hilbert, Einstein, and Klein (see Brading, 2005), and remains a delicate issue (for discussion, see Hoefer,
2000).

49Corry (2004) amply demonstrates the extent of this interest, examining in considerable detail Hilbert’s many
lecture courses and seminars devoted to various physical theories or questions of current physics.
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( Axiomatization has the express purpose of testing the consistency of new hypotheses
with previously adopted axioms and assumptions, a task that requires ‘the rigorously
logical building up of a theory’ in place of its informal statement in experiential or
intuitive terms.

These points are of special interest for understanding the role of the axiomatic method in
Hilbert’s two notes on the ‘Foundations of Physics’; in particular, they highlight again
Theorem I’s epistemological significance, pinpointing the tension between the apparently
conflicting assumptions of general covariance and causality. Above all, we wish to stress in
general the hypothetical character of Hilbert’s axiomatic approach to physics, which was
explicitly recognized by Hilbert’s former student and Göttingen physics colleague Max
Born in a tribute on the occasion of Hilbert’s 60th birthday entitled ‘Hilbert and Physics’:

[B]eing conscious of the infinite complexity he faces in every experiment [the
physicist] refuses to consider any theory as final. Therefore y he abhors the word
‘axiom’ to which the sense of final truth clings in the customary mode of speech. y
Yet the mathematician does not deal with the factual happenings, but with logical
connections; and in Hilbert’s language the axiomatic treatment of a discipline in no
way signifies the final setting up of certain axioms as eternal truths, but the
methodological requirement: Place your assumptions at the beginning of your
considerations, stick to them and investigate whether these assumptions are not
partially superfluous or even mutually inconsistent (Born, 1922, pp. 90–91).

As both Einstein and Hilbert were aware in 1915, Einstein’s gravitational theory,
though in principle capable of encompassing all matter fields into spacetime geometry, did
not itself suppose any particular theory of matter. This can be most readily seen in the
purely phenomenological significance it accords to the stress-energy tensor, as a place
holder into which any detailed theory of matter must fit or conform, a mere structure of
‘low grade wood’ contrasting with the ‘fine marble’ of the left-hand (geometric) side of the
Einstein field equations (Einstein, 1936, p. 335). On the other hand, the axiomatic method
seems ideally suited for setting up a speculative theory from whose common basis
both gravitational and matter fields might arise. In this way, a system of fundamental
equations of physics might be erected that would include all known physical interactions.
The principal attraction of the Mie theory to Hilbert seems precisely to have been that,
coupled with Einstein’s theory of gravitation, it enabled such a hypothetical axiomatic
completion of physics that could be studied by drawing consequences from the
amalgamation of the two theories. In this regard, Hilbert’s own ‘theory’ of 1915 is a
canonical illustration of a mode of investigation by the ‘axiomatic method’, in Hilbert’s
most precise characterization of that method, as the ‘mapping’ (Abbildung) of a ‘domain of
knowledge’ (Wissensgebiet) onto

a framework of concepts so that it happens that the objects of the field of knowledge
correspond to the concepts, and the assertions regarding the objects to the logical
relations between the concepts. Through this mapping, the (logical) investigation
becomes entirely detached from concrete reality (Wirklickkeit). The theory has
nothing more to do with real objects (realen Objekten) or with the intuitive content
of knowledge. It becomes a pure construction of thought (reine Gedankengebilde), of
which one can no longer say that it is true or false. Nevertheless, this framework of
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concepts has a significance for knowledge of reality in that it presents a possible form
of actual connections. The task of mathematics is then to develop this framework of
concepts in a logical way, regardless of whether one was led to it by experience or by
systematic speculation.50

Hilbert was familiar with the Mie theory at least since its discussion in the Göttingen
Mathematical Society in December 1912 and again in December 1913, when Born
had set it into a more canonical mathematical form (Corry, 1999, p. 176). Certainly,
that Mie had sought to derive field equations of a generalized Maxwellian electro-
dynamics from an axiom of a Lorentz (orthogonally) invariant ‘world function’
appearing as a variational principle, fitted very naturally into Hilbert’s axiomatic
approach.

But the Mie theory presented an eminently suitable candidate for the attention of the
‘axiomatic method’ for a number of other reasons that merit illumination, reasons not so
much physical but mathematical and philosophical. In particular, Hilbert saw distinct
advantages in the Mie theory over the only other rival electromagnetic theory of matter of
consequence in 1915, the electron theory, on which Hilbert had lectured in Göttingen in
the summer semester of 1913, and would again in the summer semester of 1917.51 Namely,
the Mie theory was a priori consistent with the principle of causality in two ways that the
electron theory was not.

First, it employed only differential equations, whereas the electron theory, as Hilbert
noted in lectures in the summer semester of 1916 (pp. 101–102), was a mixture (ein
Gemisch) of functional, differential, and integral equations. From the standpoint of
consistency with the field theoretic prohibition against action-at-a-distance, the Mie theory
was clearly to be preferred to the electron theory.

Second, the Mie world function yielded four electrodynamical equations for the four
unknown electrodynamic potentials. From given boundary and initial conditions,
one could show that the state of the world at any future time could be univocally
determined via these equations through specification of the values of these potentials
at any prior time, just what is required by the principle of causality (as Hilbert
understood that principle). Although in the Mie theory itself this causal determination is
purchased at the cost of gauge invariance (the Mie potentials have ‘absolute’ values),
we have seen that Hilbert’s construction recovers the gauge invariance of electro-
magnetism.52 Hence, causality comprised another prop of support to the Mie theory.
Ironically, precisely what current wisdom deems wrong about the Mie theory, that it
assigns absolute values to the electromagnetic vector potentials, was thus a philosophical
ground in favor of it cited by Hilbert. In sum, even as Hilbert was still uncertain about the
standing of the principle of causality in the new physics of Einstein’s principle of general
invariance (e.g., Hilbert 1916a, p. 110), he found Mie’s theory most suitable for
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50Hilbert’s Winter Semester 1921–1922 lectures on the ‘Grundlagen der Mathematik’, cited and translated in
Hallett (1994, pp. 167–168).

51Corry (1999, pp. 174, 183). Corry (2004, p. 271) observes that ‘Hilbert’s lectures on electron theory
emphasized throughout the importance of Lorentz transformations and of Lorentz covariance, and continually
referred back to the works of Minkowski and Born’.

52As a referee has reminded us, within the broad framework of Mie’s theory, conceivably one might hope to find
a matter representation based on generalized Maxwell equations following from a Lagrangian containing only
gauge invariant terms.
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incorporation into his theory by its a priori consistency with the requirement of
causality.
Finally, as we saw in Section 3.3, above, there were also a posteriori reasons justifying

Hilbert’s incorporation of Mie’s theory into his axiomatization of fundamental physics.
Namely, Hilbert could show that the gauge structure of electromagnetism was recovered
by his generally covariant generalization of Mie’s theory, and that his energy tensor for
non-gravitational energy coincided with Mie’s energy tensor in the special relativistic limit.
As we have seen, both of these results were crucial to Hilbert’s claim that electrodynamic
phenomena are a consequence of gravitation.

6. Hilbert’s Second Communication on ‘The Foundation of Physics’

On 4 December 1915, ‘The Foundation of Physics (Second Communication)’ was
presented to the Göttingen Academy. A further presentation under that rubric was
delivered on 26 February 1916. However, both of these were withdrawn before
publication, and no version of either has apparently survived (Sauer, 1999, p. 557 and
n. 120, p. 560 and n. 129; 2001, p. 3). From Hilbert’s correspondence, it may be
conjectured that one principal topic concerned a much anticipated derivation of ‘the
electron’ from Hilbert’s generalization of Mie’s electrodynamic equations. In a brief
summary, Sauer emphasizes that Hilbert could not provide what had been promised at the
conclusion of the First Communication, viz., the electromagnetic part of a Lagrangian
world function that would allow derivation of the electron, and thus explain (as Hilbert
put it) ‘the most intimate and up to now hidden processes within the atom’. That goal,
certainly, was never attained. A third submission under that title was finally given to the
Academy for publication on 23 December 1916, appearing in print early in 1917.
According to our reconstruction, this third submission must have a significantly different
content from the previous (and non-extant) versions. Despite period recognition by Weyl,
Pauli, and von Laue, the paper has been treated as largely independent of Hilbert’s First
Communication, and in any case, has been widely disregarded by historians, physicists,
and philosophers alike. We claim that the Proofs enable us to see that the two
communications are united within a logical and epistemological investigation of a
generally covariant field physics via the axiomatic method.
As discussed above, in the light of Einstein’s final submission of 25 November, Hilbert’s

resolution of the twin-faceted problem of causality in the Proofs could not be maintained.
Hilbert had made use of a non-generally covariant treatment of energy to resolve the
problem of mathematical underdetermination, whereas Einstein had demonstrated that the
general theory of relativity admits a generally covariant treatment of energy. It is our
contention that the primary concern of the published version of the Second Communica-
tion is the presentation of a new resolution of the causality problem. This new resolution
required a richer and deeper physical and epistemological approach, which amounts to a
revision of Kant in the light of the new physics of general covariance. We discuss this claim
in detail in Section 8, below, following our presentation of the details of the Second
Communication. However, it is necessary for this presentation that we indicate the
pertinent features of Hilbert’s revision of Kant. We do this in Section 6.2, before outlining
Hilbert’s paper in Sections 6.3–6.7. We begin, however, with a brief glance at the scant
secondary literature on the Second Communication.
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6.1. Secondary literature on the Second Communication

There is remarkably little modern discussion of Hilbert’s Second Communication, even
in the history of relativity literature. Pais’s assessment (1983, p. 258) that ‘it contains a
synopsis of [Hilbert’s] 1915 paper and a sequel to it’ is perhaps typical. Such neglect did not
occur in the wake of its appearance. Weyl, remarkably, had originally cited this paper, but
not the First Communication, in the penultimate version of the first edition of his classic
Raum-Zeit-Materie (1918a), much to Hilbert’s chagrin when he read the printer’s proofs.53

Pauli, who needed Klein’s prodding to credit Hilbert (1915b) with simultaneous discovery
of the Einstein gravitational field equations, nonetheless devoted a section of his relativity
book with the arresting title ‘Reality Relations’ to Hilbert’s Second Communication
(see further below).54 Among recent discussions, Stachel (1993) considers this paper solely
as a first preliminary attempt to put the generally covariant field equations of gravitation in
Cauchy normal form, from which stems subsequent work on the initial value and Cauchy
problems in general relativity.

In our opinion, the Proofs of the First Communication provide a crucial insight into
the intended main theme of the Second Communication, presenting the basis for a
significant reinterpretation of that paper. It might seem curious that such a reconsideration
has not been given before. However, the exclusive interest heretofore in reconsidering the
First Communication in the light of the Proofs has been the ‘priority issue’, concerning
whether Einstein or Hilbert first arrived at the Einstein field equations. Given its later date,
the Second Communication has not been thought relevant. However, we think that a
correct interpretation of the Second Communication, and thereby of the common project
carried out by Hilbert jointly in his First and Second Communications, reveals that the
attention long given the question of priority is in fact misplaced, stemming from a failure
to view Hilbert’s project within the context of the axiomatic method within which it
was conceived and carried out. Once this context is taken into account, we believe
that Felix Klein in 1921 got it exactly right: ‘there can be no talk of a question of priority’
(see n. 7 above).

By far the most sustained examination we know of Hilbert’s second paper is that of
Renn and Stachel (1999, pp. 77–90). Their principal conclusion is that the paper shows
‘Hilbert at work on general relativity’, his choice of topics exhibiting how his ‘original goal
of developing a unified gravito-electromagnetic theoryyhas been modified in the light of
the successes of Einstein’s purely gravitational program’ (p. 77). To be sure, much of
Hilbert’s paper is concerned with integrating his field equations in regions where the
electromagnetic field disappears, i.e., where they coincide with Einstein’s ‘empty space’
equations. But according to Renn and Stachel, Hilbert’s paper simply tackles seriatim a list
of six topics within general relativity, with no tissue or thread of argument connecting
them. Their discussion of the last two of these (‘Euclidean geometry’ and ‘The
Schwarzschild Solution’), occupying 11 pages, is however not so much concerned with
Hilbert’s second paper as with material from Hilbert’s 1916/1917 winter semester lectures
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53See the draft letter of Hilbert to Weyl dated 22 April 1918, as translated in Rowe (2003, p. 66).
54Pauli (1921, y22). Rowe (2001, p. 408) notes that Pauli’s in-print recognition of Hilbert as codiscoverer came

only after two letters from Felix Klein (8 March 1921 and 8 May 1921), the latter complaining that the ‘physicists
mostly pass over Hilbert’s contributions in stony silence’. See Pauli (1979, pp. 27, 31).
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where Renn and Stachel find Hilbert’s motivations far more transparent. Their conclusion
is illustrative:

In summary, this paper must be considered a curious hybrid between the blossoming
of a rich mathematical tradition that Hilbert brings to bear on the problems of
general relativity, and the agony of facing the collapse of his own research program
(p. 90).

In this section we shall show that Hilbert’s second paper is not at all a laundry list of
special topics in general relativity and that Hilbert, far from being in ‘agony’ over the
‘collapse of his own research program’, deemed this paper to be its completion.
Our contention is that, in the Second Communication, Hilbert is returning to the

puzzling issue of Cauchy determination for generally covariant theories clearly articulated
in the Proofs of his First Communication. Hilbert’s Second Communication is, we argue,
principally concerned with providing a satisfactory reconciliation between the principles of
general invariance and causality. Hence, the structure of the argument in the second paper
must be understood in the light of the suppressed proofs.

6.2. Outline of Hilbert’s revision of Kant

As we noted in Section 2 above, Hilbert’s discussion of generally covariant physics
should be understood against the background of his axiomatic method and his appeal to
Kantian epistemology. According to Hilbert (and many others, see Ryckman, 2005), the
new generally covariant physics requires some modification of Kant. We discuss this in
detail in Section 8, below, but it is worthwhile indicating the main features of Hilbert’s
particular revision now, before turning to our discussion of the details of the Second
Communication.
The crux of Hilbert’s suggested amendment, in our reconstruction, is that a distinction

must be made between being a possible object of physics and being a possible object of
experience. Such a distinction is, of course, anathema to the usual understanding of
Kant’s conception of cognition, which does not extend beyond objects of possible
experience. However, for Hilbert, while representation in space and time and the
requirement that causes precede their effects remain conditions of a possible object of
experience, they are no longer necessary conditions for a possible object of physics. Rather
the guiding criterion of physical objectivity is now general invariance that, of course,
Hilbert has adopted as an axiom of his theory. Thus, according to Hilbert, general
invariance is an ideal constraint informing the search for fundamental physical laws. As we
shall discuss in Section 8, Hilbert viewed this amendment as a significant step forward in
eradicating unnecessarily limiting aspects of human subjectivity from the conceptual
structure of physics.
In short, the principle of causality (that causes always precede their effects, in distinction

from the mathematical requirement of univocal determination) is an anthropomorphic
condition imposed by the structure of the human mind fashioning the character of human
experience, but this limitation no longer bounds the possible objects of physics. In Hilbert’s
view, this is the fundamental philosophical significance of Einstein’s theory and it is of vital
importance for understanding Hilbert’s discussion of causality in his Second Commu-
nication, as we will now show.
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6.3. Outline of Hilbert’s Second Communication

Hilbert begins with several ‘preliminaries’, in which he introduces the geometrical
notions that he will rely on, and then announces his intent (see Section 6.4). The main
theme of the paper concerns the relationship between general covariance and the principle
of causality, which Hilbert separates into two problems: the problem of causal ordering
(see Section 6.5), and the problem of univocal determination (Section 6.6). With the results
of this investigation in hand, Hilbert then revisits the ‘old question’ of whether Euclidean
geometry is valid for reality (see Section 6.7).

As we shall see, Hilbert’s treatment of the problem of causality in generally covariant
theories has four principal facets. First, he observed that arbitrary point transformations
(diffeomorphisms) do not respect the relation of cause and effect among world points lying
on the same timelike curve. To rectify this, he introduced the notion of ‘proper coordinate
systems’, transformations among which always respect the distinction between spacelike
and timelike coordinate axes and can never reverse the temporal order of cause and effect.
Next, he pointed to the consequent need to reformulate the principle of causality within
what he termed the ‘new physics’ of general invariance, showing that here the univocal
determination of future states from present states requires coordinate restrictions on the
initial data in order to locally describe dynamical evolution off that surface. This is
attained by employing a ‘Gaussian’ coordinate system, a particular type of proper
coordinate system. The purchase of univocal determination in the new physics at the cost of
adopting special coordinate systems prompted Hilbert, thirdly, to state a ‘sharper
conception’ of the principle of general relativity (general invariance) underlying this
physics. By means of this sharper conception, he is able to give a clear account of under
what conditions a statement of physics is to be regarded as physically meaningful. Finally,
Hilbert took up the related issue of the inconsistency of Euclidean geometry (permitting,
on account of its globally fixed metrical structure, the concept of action-at-a-distance) with
the new physics of fields, which he calls a four-dimensional pseudo-geometry. To this end,
he discussed the conditions under which a pseudo-Euclidean (Minkowski) metric arises in
the new physics, and he re-derived the external Schwarzschild solution corresponding to
the solar gravitational field without the assumption that the gmv had pseudo-Euclidean
values at infinity, that is, that the solar system is embedded in a pseudo-Euclidean world.

6.4. Preliminaries

Hilbert begins with the introduction of a four-dimensional pseudo-geometry. The
geometry is ‘pseudo’, Hilbert explains,55 because in coordinatizing the space, one
coordinate will be distinct from the other three (the metric is indefinite rather than
positive definite). By taking the coordinates xs to be functions of parameters along the
curves of this geometry, the curves are partitioned in the familiar way into three classes—
spacelike (Strecke), timelike (Zeitlinie), and null (Nullinie). Physical significance is
accorded to Strecke and Zeitlinie as follows. Measurements of intervals along Strecke
by means of ‘measure threads’ give lengths, and measurements of intervals along Zeitlinie
by means of ‘light clocks’ give proper times.
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Three aspects of Hilbert’s treatment of these now familiar topics merit attention. First,
such a pseudo-geometry must allow for mixed orthogonal transformations corresponding
to reversals of direction in time. Second, Hilbert’s characterization has a purely
geometrical flavor. Thus, in the context of his pseudo-geometry, Hilbert wrote down the
Monge ordinary differential equation as gmv (dxm/dp)(dxv/dp) ¼ 0, and the Hamilton–
Jacobi partial differential equation as gmv (qf/qxm)(qf/qxv) ¼ 0, i.e., in terms of the metric
tensor, showing that these are equations of the null cone field, and that geodesic null lines
are the characteristics of the Monge, and bi-characteristics of the Hamilton–Jacobi
equation. Null geodesics emanating from any world point form the null cone (‘conoid’) at
that point and Hilbert observed that the equation of this conoid is a solution to the
Hamilton–Jacobi equation, whereas all timelike worldlines emanating from a world point
lie inside its conoid, their boundary (Klein, 1927, p. 107; Renn & Stachel, 1999, p. 79).
Thirdly, it is significant that in his discussion of ‘measure threads’ and ‘light clocks’

Hilbert does not, as Einstein will several years later (Einstein, 1921), posit ‘practically rigid
rods’ and ‘ideal clocks’ as presuppositions of the applicability of the pseudo-geometry to
the actual world.56 As with all instruments of measurement, these measure threads and
light clocks presuppose the space and time of human sensibility. And, as with Einstein’s
rods and clocks, they are independent assumptions added to bring empirical content to the
theory. Nevertheless, Hilbert’s ideal instruments are less egregiously independent: they lack
the pseudo-Euclidean assumptions of Minkowski geometry and, in principle, can be
completely characterized within ‘pure field theory’ (as set up in the fundamental field
equations (2) and (3) of his First Communication). To highlight this character, Hilbert
spoke of measure threads and light clocks as ‘instruments of invariant character’ in whose
terms ‘every physical fact must ultimately (in principle) be ascertained’ (1917, p. 61).
Presumably, Hilbert meant by this that they can be employed everywhere and everywhen by
any observer in an arbitrary state of motion, and so provide the empirical basis for a
generally invariant field physics, of which, as already noted, these instruments are
themselves a part.
All of the above has been preliminary. At this point the main theme of the paper

appears: the problem of causality for the new physics of general invariance. The problem is
twofold. First, there is the question of how to ensure that the new physics respects the
experienced causal ordering of events. The second, taken up in Section 6.6 below, revisits
the question of the Cauchy problem in the new physics (i.e., the problem of univocal
determination), since the resolution given in his First Communication has turned out to be
incorrect.

6.5. The problem of causal order

On the basis of Axiom II of his First Communication (the axiom of general invariance),
and with implicit reference to Einstein’s requirement of general covariance for the
fundamental equations of the new physics, all coordinate systems arising from xs by
arbitrary smooth transformations have up to now been regarded as on an equal footing
with one another. However, Hilbert observed that a conflict with the causal order will arise
if two world points lying along the same timelike curve, and standing in the relation of
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cause and effect, can be transformed so that they become simultaneous (i.e., lie on the same
data hypersurface). The causal order concerns our experience of the world in space and
time, and thus we have an apparent conflict between the overriding demand of objectivity
expressed by general covariance and the experienced causal ordering of events. The conflict
is only apparent, however.

Although Hilbert speaks (p. 57) about the need to restrict the arbitrariness of coordinate
systems, his example concerns point transformations (in fact, along one and the same
timelike curve) and the fact that the diffeomorphism invariance of manifold point
transformations need not preserve the relation of causal order among events. If the new
physics is to be compatible with the experienced causal ordering of events, we need to
restrict the allowed coordinate systems such that under a coordinate transformation any
timelike curve remains a timelike curve. To achieve this end, Hilbert introduced what he
called ‘proper’ coordinate systems.

If x4 is designated as the ‘proper’ time coordinate, a ‘proper (eigentlich) coordinate
system’ may be defined as one in which the following four inequalities are satisfied by the
components of the metric tensor:

g1140;
g11 g12

g21 g22

&&&&&

&&&&&40;

g11 g12 g13

g21 g22 g23

g31 g32 g33

&&&&&&&

&&&&&&&
40; g44o0. (15)

These inequalities are justly named ‘Reality Relations’ (‘RealitätsverhältniX e’) by Pauli
(1921, y22), for they implement, in the case of general Riemannian geometry, the physical
requirement of metrical indefiniteness: that three of the coordinate axes are spacelike, and
one timelike. Together the restrictions imply that gð¼ det jgmvjÞo0, so

ffiffiffiffiffiffiffi$g
p

must replaceffiffiffi
g
p

in all tensor formulae. A coordinate transformation carrying such a proper spacetime
description into another proper spacetime description is called a proper spacetime
coordinate transformation.

The desired effect of proper coordinate systems is seen in considering a parameterized
timelike curve, xs ¼ xs(p). Since for such a curve, and using Hilbert’s abbreviation (1917,
p. 54),

G
dxs

dp

$ %
o0; G

dxs

dp

$ %
¼ gmn

dxm

dp

dxn

dp
ðm; n ¼ 1; 2; 3Þ

" #
, (16)

it follows that in a proper spacetime coordinate system it is always the case that

dx4

dp
a0. (17)

Accordingly, along such a curve the proper time coordinate continuously increases or
decreases. Since any timelike curve remains a timelike curve under a proper coordinate
transformation, two world points along such a curve can never receive the same value of
the time coordinate through a proper spacetime coordinate transformation. On the other
hand, when x4 is constant, that is,

dx4

dp
¼ 0, (18)
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one is dealing with a spacelike curve, a Strecke or a spatial extension between two world
points, for which the first three inequalities of (15) are positive.57

The significance of these coordinate restrictions for the principle of causality is then
clearly spelled out:

So we see that the concepts of cause and effect lying at the basis of the principle of
causality also in the new physics never lead to inner contradiction, as soon as we
always take the inequalities (15) in addition to our fundamental equations; that is, we
restrict ourselves to the use of proper space-time coordinates (1917, p. 58).

As further discussed in Section 8, it is not nature but the structure of our cognitive
experience (in Kantian terms, of our faculties of sensibility and understanding) that leads
to the requirement that we use proper coordinate systems—it has to do not with the
possible objects of physics, which belong to the conceptual realm only, but with the
possible objects of experience (physical facts as determined by measure threads and light
clocks) as these are represented standing in causal relations within spatio-temporal
empirical intuition.
The discussion of preserving causal order of events through use of proper coordinate

systems concludes with the introduction of the so-called ‘Gaussian coordinate systems’.
Hilbert employs such a system later at the end of his paper when integrating the Einstein
equations in the Schwarzschild situation of the gravitational field of a mass point at rest.
Gaussian systems are local coordinate systems for the region in M of any point p lying on a
hypersurface Sn$1CM (n ¼ dim M) according to which any point q in the forward
evolution sufficiently close to the given point p lies on a unique geodesic (of length oe)
leaving p orthogonally from Sn$1. In such coordinate systems also it can never be the case
that the points p and q can be transformed to the same hypersurface of simultaneity, and
so Gaussian systems are always proper coordinate systems.58

6.6. The problem of univocal determination

In turning now to the central problem of univocal determination in the new physics,
Hilbert returned to the principal theme linking the two communications: the consequences for
causal determination issuing from Theorem I of his First Communication. As we have seen,
Hilbert regarded this theorem as the ‘guiding motive (Leitmotiv) for the construction of my
theory’. Theorem I stated that, due to the general invariance of the world function stipulated
in Hilbert’s Axiom I, there are 4 identities obtaining between the Euler–Lagrange equations
of motion derived from the action associated with the world function. As a result, any theory
with a generally invariant action will have 4 fewer independent equations of motion than
dynamical variables; if the number of these variables is n, the number of independent
equations is n$4. The implication, clearly stated in the Proofs, but excised entirely in the

ARTICLE IN PRESS
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transformed to simultaneity by a coordinate transformation that is ‘proper’ in the sense that it preserves causal
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58Gaussian coordinates preserve the number of independent equations but manifestly reduce the number of
‘physical’ potentials, thus making the overdetermination obvious. Our thanks to a referee for this way of phrasing
the utility of Gaussian coordinates for Hilbert’s purposes.
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published version of Hilbert’s First Communication (see Section 4.2 above), is the causal
underdetermination of the dynamical evolution of the fields represented by the generally
invariant action. We reiterate here that the scope of Theorem I extends to any generally
invariant theory, and is thus broader than either general relativity or Hilbert’s theory itself.
Indeed, the tension it revealed between general invariance and causal determination is a
mathematical result attained via the axiomatic method, not a result of heuristic argumentation
(as in the ‘hole argument’, of which more below in Section 7). Appropriate to the meta-logical
concerns of that method, Theorem I exposed an apparent inconsistency between fundamental
principles, each supposed to have unrestricted validity. Resolving this problem is therefore the
common agenda for Hilbert’s two papers on Foundations of Physics.

While the conflict between general invariance and causal determination is only implied,
via Theorem I, in the published version of Hilbert’s first paper (and accordingly
downplayed in the literature), in his 1917 paper Hilbert nonetheless claimed (see the
quotation below) that there he had ‘especially stressed’ this fact. One might conjecture that
Hilbert had merely forgotten that any explicit reference to the failure of Cauchy
determination for his fundamental equations had been excised from the Proofs, along with
his non-covariant treatment of energy. However, it is more plausible to think otherwise.
Hilbert’s first resolution had been cast in terms of finding ‘four additional non-invariant
equations’, a strategy that hadn’t worked. Then, when revising the Proofs in the light of
Einstein’s work, it seems he had not yet seen that the solution lay not in four additional
non-invariant equations, but rather in the four inequalities (15). Uncertain about how the
issue was to be resolved, Hilbert had simply buried the entire issue in the published version.

In the event, the main point of the 1917 paper is to provide a quite different manner of
resolution. Although continuing his interpretation of Theorem I that the four generalized
Maxwell equations (3) are a consequence of the ten gravitational equations (2), this claim
lies well in the background, while the matter of causality is given pride of place. The basic
achievement of the paper is to give the necessary reformulation of the causality principle
that is required by the new physics of general invariance.

The need for such a reformulation is explicitly stated. Hilbert observed that up until the
present time all physical theories permitting a variational formulation have satisfied the
requirement of causality, in the sense that this formulation yielded a determinate system of
differential equations, providing univocal determination of future states from present
states and their time derivatives. As precisely formulated by Cauchy, causal determination
requires that the theory provide an independent equation for each unknown function
appearing in the theory, a result secured by ‘the well-known Cauchy theorem on the
existence of integrals of partial differential equations’. However, the situation is otherwise
once the requirement of general invariance is raised:

Now the fundamental eqs. (2) and (3) set up in my first contribution are, as I
especially stressed there, in no way of the above-characterized kind. Rather,
according to Theorem I four are a consequence of the remaining ones: We viewed the
four Maxwell equations (3) as a consequence of the ten gravitational equations (2)
and therefore have only the 10 essentially independent equations (2) for the 14
potentials gmv and qs.

As soon as we raise the requirement of general invariance for the fundamental
equations of physics, the just mentioned circumstance is even essential and necessary
(1917, pp. 59–60).
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On the other hand, Hilbert claimed that the situation in the newly emerged generally
invariant physics is such that

from knowledge of physical magnitudes in the present and past, it is no longer
possible to univocally deduce their values in the future.

This contention is illustrated by the vivid (anschaulich) example of an imagined integration
of his fundamental equations (2) and (3), yielding a solution corresponding to a single
electron ‘at rest’. (Of course, neither Hilbert nor anyone else actually obtained such
solutions!) In this case, the 14 potentials are determinate functions only of the space
coordinates, are completely independent of the time coordinate x4, and as well, the first
three components of the charge and current density (Viererdichte) may vanish. Hilbert then
transforms the 14 potentials according to a coordinate transformation in which all
quantities retain the old values in the primed system, except that for x0440, one spatial
coordinate (say, in the x direction) transforms as a function of x04. This is a coordinate
transformation in the space of solutions that apparently transforms a resting electron into
one in motion. But in allowing such a transformation to an improper coordinate system,
two conflicting descriptions of the behavior of the electron are given—one in which it
remains at rest, and the other in which it suddenly (deus ex machina) starts to move. Thus,
the underdetermination at the level of the fundamental equations leads to a problem at the
level of spatio-temporal—and causal—description.
As a result, Hilbert argued, we are driven to reformulate the causality principle through

‘a sharper grasp’ of how the general invariance of the new physics should be understood.
The general invariance of the laws is, as we shall see further in Section 8, a regulative ideal
of physical objectivity that applies to the conceptual structure of fundamental (field)
physics. There remains the question of how the principle of general invariance should be
understood not in the context of laws but in that of individual statements concerning the
spatio-temporal evolution of particular systems or objects. Hilbert therefore revisited the
question of what is meant by the meaningfulness of physical statements once the principle
of causality is taken into account. His solution can be elucidated as follows. A necessary
condition for such a statement to be physically meaningful is that it has a generally
covariant formulation. But of course, this is not sufficient. For when such statements are
predictions, i.e., concern the future, Hilbert stipulated that their meanings are to be
understood in such a way that the requirement of physical causality (viz., that causes
precede their effects) is satisfied:

As now regards the principle of causality, the physical quantities and their time-rates
of change may be known at the present time in any given coordinate system; then a
statement will have physical meaning only when it is invariant with respect to all
those transformations for which precisely those coordinates used for the present time
remain unchanged. I affirm that statements of this kind for the future are all
univocally determined, that is, the causality principle holds in this formulation: From
the knowledge of the 14 physical potentials gmv, qs in the present, all statements
concerning them for the future follow necessarily and univocally, in so far as they have
physical meaning (1917, p. 61).

Renn and Stachel (1999, p. 81) correctly observe that this is obviously not a claim that
physically meaningful statements are independent of the choice of a coordinate system. On
the other hand, neither is it evidence for what they go on to suggest, that Hilbert still
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attaches ‘some residual physical meaning to the choice of coordinates’. Rather, as is
apparent from Hilbert’s formulation, the criterion of physical meaningfulness of
statements requires satisfaction of the principle of causality in the usual sense that
conditions in the present determine those in the future. Furthermore, any such physical
statement must be independent of how it is designated by coordinates; i.e., it must be, in
Hilbert’s terms, an invariant statement.59

With this conception of the causality principle in hand, we can formulate the necessary
and sufficient conditions for a proposition to be physically meaningful:

(a) The proposition must have a generally covariant formulation.
(b) When the proposition is expressed with respect to a proper coordinate system, the truth

value of that description must be uniquely determined from an appropriate spacelike
past hypersurface.

In other words, when we express the propositions of physics in terms of possible objects of
experience (that is, including the spatio-temporal and causal aspects of how we experience
objects), those statements are physically meaningful if and only if they are causally
determinate in the sense of condition (b), as well as satisfying condition (a).

From Hilbert’s point of view, the physical principle of causality, as preserved by the
coordinate conditions of a well-posed Cauchy problem, is a lingering but ineliminable
constraint on human understanding (‘physical meaningfulness’), a necessary condition
imposed by the mind in structuring experience. Like the subjectivity of the sense qualities,
the requirement of physical causality is anthropomorphic, having to do not with the
objective world of physics but rather with our experience of that world.60

Hilbert offers an existence proof for his reformulated principle of causality in terms
of a Gaussian spacetime coordinate system; in such a system, corresponding to the 10
potentials of Hilbert’s theory,

gmnðm; n ¼ 1; 2; 3Þ; qsðs ¼ 1; 2; 3; 4Þ (19)

is a system of just as many partial differential equations. Integrating them on the basis of
the given initial values for x4 ¼ 0, then the values of (19) for x440 are univocally
determined. Expressed in these terms, any statement about the univocal determination of
the future is of invariant character.

There are, furthermore, several diverse ways of mathematically expressing invariant
statements. Three examples are cited. The first pertains to the choice of a particular
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on pages 5–6: ‘We will prove that the thus formulated causality principle: ‘‘All meaningful assertions are a
necessary consequence of what has gone on before (der vorangegangenen)’’ is valid’. Also, page 5: ‘That is, one
must not only say that the world laws are independent of reference system, but rather also that any individual
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60Norton (1993, pp. 805–806) briefly discusses the electron example (see above), and claims that, according to
Hilbert, statements about the motion of the electron are physically meaningless because they are not invariant, but
one can make them invariant by the introduction of a Gaussian coordinate system. According to our exposition of
Hilbert, physical meaningfulness depends on the satisfaction of two conditions: condition (a) is satisfied by some
generally covariant statement about the electron’s worldline, while condition (b) is satisfied via the restriction to
Gaussian coordinate systems such that, when we start talking about the motion of the electron, we don’t make
statements that contradict one another concerning the causal history of the electron.
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coordinate system in accord with the geometry of a physical situation, e.g., the use of polar
coordinates in treating the spherically symmetric gravitational field of a mass point
(Schwarzschild solution). The second way is by elimination of coordinates from any
relations, so that a statement about the electron at rest in a suitable coordinate system is a
physically meaningful statement. Finally, and most familiarly, a statement is physi-
cally meaningful if it is invariant under arbitrary transformations of the coordinates.
Interestingly, Hilbert here cites the example of energy in general where the (‘pseudo-tensor
density’) expression for the energy-momentum-stress of the gravitational field is not
generally invariant but nonetheless, if defined properly, occurs in the statement of a
conservation law that holds in every frame, i.e., is generally covariant.
In our opinion, Hilbert’s main aim, and the central achievement, of the published

version of his Second Communication on the Foundation of Physics is to provide this
reformulation of the causality principle, appropriate for generally covariant physics.

6.7. Physics as a four-dimensional pseudogeometry

The final part of Hilbert’s paper begins with the declaration that, according to his
explanations,

physics is a four-dimensional pseudogeometry whose metric determination gmv is
bound, according to the fundamental equations (2) and (3) of my first contribution,
to the electromagnetic quantities, that is, to matter (1917, p. 63).

This is a sweeping statement, and certainly a precursor of the even bolder declaration the
next year of Weyl’s ‘theory of gravitation and electromagnetism’:

Everything real (wirklich) that transpires in the world is a manifestation of the
world-metric. Physical concepts are none other than those of geometry (Weyl, 1918b,
p. 385).61

Of course, in part, Hilbert’s was a claim about the validity of Mie’s electromagnetic theory
of matter. But that is probably not the only fault that Einstein in 1916 would have found
with it. For it is also the expression of a commitment to the kind of physics that the future
would bring—a purely geometrical physics of fields under the requirement of general
invariance. Einstein was still some years away from explicitly endorsing such a program
(sans the Mie theory) in print. Beginning with his first papers on unified field theory in the
early 1920s he was, by then, de facto committed to it, and it retained his allegiance to the
end.
In any case, Hilbert’s declaration serves the rather specific purpose of enabling him to

raise the ‘old geometrical question’ of the validity of Euclidean geometry for reality, a
question that the new physics of the fundamental equations (2) and (3) have rendered ‘ripe
for solution’. The setting is this. Previous physics presupposed a prior geometry for the
formulation of its laws, whereas this is not done in the new physics (‘of Einstein’s principle
of general relativity’). Proudly emphasizing his First Communication, Hilbert states that
now the physical and geometrical laws, derived ‘at one blow’ from a variational
(‘Hamiltonian’) principle, show how the geometrical quantities gmv—also the mathematical
expression for the phenomena of gravitation—are connected to the electrodynamic
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potentials qs, and thus to the physics of matter. Hence in the new pure field physics there
can be no question of a background geometry; physics and geometry have become one
science resting on a common foundation.

In this setting of pure field physics, Euclidean geometry appears as ‘an unnatural law of
action-at-a-distance’ (ein fremdartiges Ferngesetz), inconsistent with the next-to-next
causal mechanism presupposed by all of field physics. Yet since the ‘pseudo-Euclidean
geometry’ (i.e., Minkowski metric),

g11 ¼ 1; g22 ¼ 1; g33 ¼ 1; g44 ¼ $1; gmn ¼ 0! ðmanÞ, (20)

nevertheless appears in certain circumstances as a solution to the fundamental equations of
the new physics, an investigation is needed as to whether, and under what conditions, these
are the only regular (i.e., non-singular) solutions. The involved calculations of the last
twelve and a half pages of Hilbert’s paper is largely concerned with this task, and two
specific problems are addressed.

6.7.1. An electricity-free world
Hilbert is first concerned to scrutinize his fundamental equations when the gmv adopt the

‘pseudo-Euclidean’ (Minkowski) values (20), and similarly the electrodynamic potentials
qs ¼ 0. Setting the former into the first term of the fundamental gravitational equations
(4)—see Section 4.1 above—we obtain

½
ffiffiffi
g
p

K 'mn ¼ 0, (21)

while setting the latter into the second term of the fundamental equations (4) yields

q
ffiffiffi
g
p

L

qgmn ¼ 0. (22)

This corresponds to the case of a world distant from all electromagnetic fields (and so
from matter, in Hilbert’s conception). Under such circumstances, pseudo-Euclidean
geometry is possible, but is it necessary? To answer this question, Hilbert considers
arbitrarily small variations of the Minkowski metric, according to a linear approxi-
mative procedure recently employed in Einstein (1916b) for the integration of the
gravitational field equations.62 Under certain natural assumptions about the perturbative
terms, Hilbert arrived at the conclusion that indeed such solutions are the only ‘regular’
solutions:

Through variation of the metric of the pseudo-Euclidean geometry under the
assumptions y, it is not possible to obtain a regular metric that is not patently
pseudo-Euclidean and which yet at the same time still corresponds to an electricity-free
world (1917, p. 66; original emphasis).

In other words, under these assumptions, the Minkowski metric is the only non-singular
metric corresponding to an electricity-free world. We recall that, on account of the
principle of general invariance, in the early years of general relativity it was not
immediately clear how an intrinsic characterization of a spacetime (curvature) singularity
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that (in the weak-field approximation) there exist gravitational waves, propagating at light velocity. See Pais
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might be given.63 In point of fact, Hilbert (1917, p. 70) opined that only regular solutions
to the fundamental physical equations were immediately represented in reality. As we
know, this was also one of Einstein’s most pious beliefs (see Earman & Eisenstaedt, 1999).
Nonetheless, Hilbert was the first to attempt to provide a definition of a non-singular or
‘regular’ metric. As implicitly assumed here, but explicitly stated in his winter semester
lectures in 1916/1917, Hilbert regards a metric as ‘regular’ if there exists a system of
coordinates in which the gmv are continuous and differentiable, with a non-zero
determinant of the coordinate transformation, specified to be one–one and invertible.64

However, subsequent work showed that Hilbert’s definition of a non-singular spacetime
metric is inadequate, not succeeding in distinguishing true curvature singularities from
those arising from coordinate transformation (e.g., Earman, 1995, p. 6). This must be
taken into account in his discussion of the Schwarzschild singularity.

6.7.2. Rederivation of the Schwarzschild solution for an isolated resting mass point
Prior to this in 1916, Schwarzschild had integrated Einstein’s field equations for the

gravitational field of a resting point-mass, corresponding to the sun’s gravitational field, a
central case for the empirical tests of general relativity. This was the first exact solution of
the field equations. Still earlier in November 1915, and later, in 1916, Einstein had given an
approximate solution for the same field. Both had made various assumptions about the
quantities gmv. Schwarzschild assumed that they had ‘pseudo-Euclidean’ values at infinity,
i.e., that a ‘pseudo-Euclidean’ metric obtains everywhere outside the region of integration.
The gravitational field of a point-mass at rest in Einstein’s ‘approximative integration’
was, on the other hand, calculated as a small perturbation of the metric of Minkowski
(i.e., ‘pseudo-Euclidean’) geometry. Hilbert concluded his paper by re-deriving the
Schwarzschild exact solution without any assumptions about the gmv at infinity, hence
without the implicit assumption of the global validity of pseudo-Euclidean geometry. As
we know, Einstein (1917) achieved the same result in explicit cosmological terms with the
concept of a finite but unbounded universe.

6.8. Conclusion concerning the Second Communication

Our contention is that the material cut from the Proofs establishes a thematic linkage
between the First and Second Communications. Specifically, the material cut from the
Proofs concerns Hilbert’s first attempt to resolve the tension between causality and general
covariance, precisely formulated by Theorem I. In the 1917 published version of the
Second Communication, Hilbert offers us a detailed discussion of this tension, including a
new resolution of the ‘problem of causality’, and a discussion of to what extent pseudo-
Euclidean (‘action-at-a-distance’) geometry is present in the new theory. The setting for the
Second Communication is Hilbert’s axiomatic method, as it was in the First
Communication. In our opinion, Hilbert’s Second Communication is an integral and
natural continuation of the project set up in his First Communication, and contains
important and interesting developments of that project. It is not, as has been affirmed, a
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hodge-podge of unrelated issues presented within the framework of Einstein’s completed
theory. Indeed, recapitulating the essential details of the theory presented in his First
Communication in lectures entitled ‘The World Equations’ in Hamburg in the summer of
1923, Hilbert, so far from being in the ‘agony of facing the collapse of his own research
program’, considered Einstein’s concurrent 1923 publications on unified field theory as
having arrived, after a ‘colossal detour’ (‘kolossaler Umweg’), at a ‘Hamiltonsche Prinzip’
(Lagrangian density for the combined gravitational and matter fields) essentially similar to
that Hilbert originally proposed in December 1915.65 It is, presumably, this convergence
that led Hilbert to republish, in 1924, both of his communications in revised form in the
Mathematische Annalen.

7. Hilbert and the ‘hole argument’

The tension between general covariance and causality is just the problem encountered by
Einstein in the ‘hole argument’. But in Hilbert’s hands, is there any reason to think that, as
with Einstein, the difficulty arose from wrongly attributing physical meaning to the
spacetime coordinates? That Hilbert’s four non-covariant energy equations do implicate
such a misunderstanding is affirmed by Renn and Stachel (1999, pp. 77, 83):

y we will discuss Hilbert’s treatment of the problem of causality in Paper 2 [Hilbert
(1917)] and encounter further evidence for his neglect of Einstein’s insight that, in
general relativity, coordinate systems serve as mathematical devices for the
description of space-time coincidences and have no physical significance of their
own. y In summary, Hilbert’s treatment in Paper 2 of the problem of causality in
general relativity still suffers from the flaws of his original approach, in particular,
the physical significance he ascribed to coordinate systems and his claim that the
identities following from Theorem I represent a coupling between two sets of field
equations.

We could not disagree more strongly with everything said in these remarks. Certainly,
there is a construction in Hilbert’s so-called ‘Causality Lecture’ (1916b) that looks
superficially similar to the ‘hole argument’, but the relevant question is what problem
Hilbert saw as following from his construction. It seems clear to us that the issue
concerning Hilbert was very different from that which plagued Einstein, and we have three
sources of supporting evidence.

Consider first the direct evidence: Hilbert’s Theorem I as compared with Einstein’s ‘hole
argument’. These can be considered as different construals of the same problem (causal
underdetermination) just to the extent that if (counterfactually) the Euler–Lagrange
equations in a generally covariant theory were all independent, then a ‘hole argument’
construction could be given which would show a failure of univocal determination.66 But
of course, this is just what Hilbert’s Theorem I prohibits. There is therefore no reason to
think Hilbert accepted the conclusion that hindered Einstein for two long years, that a
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generally covariant gravitational theory was not possible because of failure of causal
determination. After all, even with his four supplementary energy equations, the field
equations of Hilbert’s gravitational theory, even if only written in abbreviated form as
Lagrangian derivatives, are generally covariant already in the Proofs, as seen above in
Section 4.1. And although Hilbert may well have been aware of Einstein’s difficulties
in the ‘hole argument’ (see e.g., Howard & Norton, 1993), his analysis of the tension
between general covariance and causality began with the fact that the Euler–Lagrange
equations arising from his variational problem are not all independent—as must be
supposed to become entangled in the snares of the ‘hole argument’. Rather, Theorem I,
stating that four linear combinations of the Euler–Lagrange brackets are divergences
(now usually called the generalized Bianchi identities), posed an immediate difficulty for
achieving Cauchy determination in generally covariant theories. Hilbert’s discussion
of causality within the frame of the Cauchy problem (and to a lesser extent, the initial
value problem) laid out an entirely different route than that adopted by Einstein in the
‘hole argument’ for resolving the problematic relation between general covariance and
causality. There is no physical or metaphysical hypothesis involved (e.g., manifold
substantivalism or determinism), nor any confusion about the physical significance of
spacetime coordinates.
Second, there is Hilbert’s strategy, exactly opposite to Einstein’s, for resolving the

apparent tension between general covariance and causality. Unlike Einstein, Hilbert never
contemplated abandoning general covariance. It is an overriding fact that an axiom of
general invariance guided Hilbert’s construction, and that surrendering general invariance
in the face of an apparently irremediable conflict with causality was, apparently, never an
option. Although Hilbert was not yet sure how, or even if, this tension might be resolved,
he gave many indications that if need be the Gordian knot was to be cut by surrendering
causality—in the sense of Cauchy determination—not general covariance.67 The four
non-covariant additional conditions that Hilbert initially sought therefore did not so
much break the covariance of his theory as show what additional structure must be added
to a generally invariant theory in order to render it compatible with univocal
determination. On the other hand, the strategy of Hilbert (1917) expressly deals with
the causal principle in the sense that Kant maintains is intrinsic to the nature of
human cognition. As we have shown, this is in accordance with Hilbert’s general
philosophical view that physical causality, and so irreversibility, is a phenomenon rooted
exclusively in the human perspective on the world (e.g., Hilbert, 1919–1920, pp. 86–87).
Once the axiomatic method had mathematically demonstrated a prima facie antagonism
between two pillars of objectivity, one going back to Kant (physical causality) and one
reaching beyond Kant (general invariance), Hilbert sought a harmonious remedy that
would expand the sphere of what is a possible object of physics in accord with
general invariance yet must be compatible with our experience—i.e., we obviously
must be able to recover an account of possible objects of experience, of physical facts read
off from measure threads and light clocks, on pain of failure of empirical meaning, or
worse, empirical incoherence. In short, Hilbert never considered giving up general
covariance as an axiom (clearly this is not a possible solution to the problem he saw
himself as facing), but rather sought his solution in finding what further conditions must
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supplement a generally covariant theory enabling us to recover possible objects of
experience.

In our opinion there is no reason to think that the problem Hilbert saw himself as facing
with respect to causality arose, as it did in Einstein’s case, from wrongly attributing
physical meaning to the spacetime coordinates. Hilbert’s problem was a different problem,
and one that the ‘point coincidence’ solution to Einstein’s ‘hole argument’ would not even
touch upon.

Finally, there is the contextual evidence highlighted by Howard and Norton (1993),
who revealed that there was a ‘Göttingen Answer to the hole argument’, probably based
on (as Felix Klein put it, in July 1915) the widespread familiarity of Göttingen
mathematicians with the use of arbitrary coordinates in the work of Lagrange,
Gauss, and Riemann. Without paying undue regard to Hilbert’s stature as perhaps
the world’s premier mathematician in 1915, it is almost inconceivable that Hilbert
suffered from confusions on an issue clearly grasped by the rest of the Göttingen
mathematical community. As evidence, we simply underscore again Hilbert’s
remarks, in both Proofs and published papers, that coordinates are arbitrary designations
of physical events, and his use of the term ‘world parameters’ to highlight this
arbitrariness.

To think that Hilbert could have been a victim of Einstein’s ‘hole argument’ is, we
maintain, to misunderstand his project entirely.

8. Hilbert’s revision of Kant in the light of general invariance

In the context of a discussion of Hilbert’s views on foundations of mathematics,
Peckhaus (1994, p. 91) has recently remarked that

Hilbert’s preference for Kantianism was largely incompatible with Kant’s philosophy.

However, this statement should be qualified, for its truth largely depends on what is meant by
‘Kant’s philosophy’. To many of the neo-Kantians active in the first quarter of the twentieth
century, Kant’s philosophy was largely a work in progress, not a finished edifice, and nearly all
were prepared to concede, as was Hilbert (1930, p. 383), that ‘Kant greatly overestimated the
role and the extent of the a priori’. By the same token, it might be said that Hilbert, through
the axiomatic method, was the first neo-Kantian to put his finger on exactly where the general
theory of relativity required a modification in the traditional Kantian transcendental
framework that expressly bound considerations of objectivity together with conditions of
possible experience. In Kant, space and time, as subjective forms of sensibility, are at once also
objective conditions for perception of objects—conditions of the possibility of experience. For
a cognition to be objectively valid (to be a representation pertaining to a possible object for us,
hence to be meaningful) is for it to invoke our specifically human type of finite, receptive
spatiotemporal sensory intuition of objects.

Hilbert essentially argued that these Kantian conditions are no longer fully universal
once the requirement of general invariance is imposed on fundamental physical theory.
While retaining part of Kant’s tie of conditions of physical meaningfulness to sensibility,
Hilbert posited general invariance as an axiom, a superordinate criterion of physical
objectivity, attributing this development expressly to the influence of Einstein’s
gravitational theory. Lecturing in the winter of 1919/1920, he affirmed:
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Einstein proceeds from the demand that all laws of nature must be invariant with
respect to arbitrary transformations; in passing from one coordinate system (x,y,z,t)
to another through an arbitrary transformation

x0 ¼ X ðx; y; z; tÞ
y0 ¼ Y ðx; y; z; tÞ
z0 ¼ Zðx; y; z; tÞ
t0 ¼ Tðx; y; z; tÞ

(satisfying only certain conditions of continuity, differentiability, and invertibility),
the mathematical form of the laws of nature should remain unaltered.

The sense of this general ‘principle of relativity’ is that a representation of nature’s
linkages (Naturzusammenhänge) once and for all free of subjectivity and arbitrariness
can only be such as is independent of the way in which the world points are
designated (through coordinates) (1919–1920, p. 49).

For this the ‘axiomatic method’ is ideally suited, for it works up a domain of objects
concretely given to sensibility into a purely logical-formal system of relations. Space and
time (and causality, presupposing both) are necessary moments of human cognition,
required also as conditions of the possibility of observation and measurement in science.
Though they remain conditions of the possibility of experience, representation in space and
time reflects merely the subjective origin of cognition in sensible experience; in the new
physics, such representation is no longer a necessary criterion of being a possible object of
physics. There, Hilbert made it clear, the pull of objectivity leads away from intuition, from
physical observation and measurement, and indeed from everything anthropomorphic.
This, of course, is just the direction of cognition captured within the axiomatic method.
The new physics of general invariance retains the traditional goal of physical science: to

achieve a completely objective description, a systematically unified, observer-free cognition
of nature. But it also has shown that this requires a further emancipation (never completely
attainable) of our conceptions of nature from all the subjective elements pertaining to
human sensibility. The principal step along this new path is just Einstein’s requirement of
general covariance.

Hitherto, the objectification of our view of the processes of nature took place by
emancipation from the subjectivity of human sensations. But a more far reaching
objectification is necessary, to be obtained by emancipating ourselves from the
subjective moments of human intuition with respect to space and time. This
emancipation, which is at the same time the high-point of scientific objectification, is
achieved in Einstein’s theory, it means a radical elimination of anthropomorphic slag
(Schlacke), and leads us to that kind of description of nature which is independent of
our senses and intuition and is directed purely to the goals of objectivity and
systematic unity.68

In referring to ‘Einstein’s theory’, it is clear that Hilbert regarded general covariance as its
philosophical focal point, as a supreme ‘principle of objectivity’. A generally covariant
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representation of nature, as Hilbert stated in lectures in Hamburg in 1923, is one of the
triumphs of the human mind:

The (general) principle of relativity signifies, it seems to me, for the first time a definitive,
exact and general expression concerning the laws obtaining in reality (Wirklichkeit), and
accordingly stands, in my opinion, at the pinnacle of pure achievements of thought of
the human mind (steht somit meiner Meinung nach unter den reinen Gedankentaten des
menschlichen Geistes oben an) (Hilbert, 1923, lecture 1, p. 16).

In accordance with ‘the general principle of relativity’ (i.e., general covariance),
physical science should aspire to a non-anthropomorphic account of physical mean-
ingfulness and objectivity, to a ‘description of nature which is independent of our senses
and intuition’.

Yet, accorded axiomatic status by Hilbert, the principle of general invariance is neither
true nor false, but a regulative idea,

if, in accordance with Kant’s words, we understand by an idea a concept of reason
that transcends all experience and through which the concrete is completed so as to
form a totality (Hilbert, 1926, p. 392).

According to Kant, such ideas are the product of the faculty of reason, not of the
understanding. Here we may recall that the epigram Hilbert chose for Grundlagen der
Geometrie occurs at the conclusion of the ‘Transcendental Dialectic’. It is the pithy
summary of what the ‘Transcendental Dialectic’ seeks to show, as stated at the very
beginning, that the character of human cognition is to be understood as interrelating the
distinct contributions of three faculties of mind.

All our cognition starts from the senses, goes from there to the understanding, and ends
with reason, beyond which there is nothing higher to be found in us to work on the
matter of intuition and bring it under the highest unity of thinking (A298-299/B355).

Accordingly, the central goal of the ‘Transcendental Dialectic’ is to complete the account
of cognition presented in the ‘Transcendental Analytic’ (the first part of the Critique of
Pure Reason, pertaining to sensibility and the categories of the understanding) by adding
precisely the cognitive role of ‘theoretical reason’ in its ‘critical’ employment. In general,
Kant viewed reason (both ‘theoretical’ and ‘practical’) as rooted in the human capacity to
project beyond given experience to seek the totality of possible experience, the ‘totality of
all conditions’ or indeed the ‘unconditioned’ presupposed by any series of conditions. Of
course, such a totality can never be an object of possible experience, and so cannot be
considered an object of cognition; this is the conclusion of the arguments of the
Antinomies of Pure Reason. But the regulative ideas of theoretical reason express what is
nonetheless essential to natural science: reason’s capacity to surpass the confines of
experience through the hypothetical adoption of maxims of systematic unity or ‘unity of
nature’.69 According to Kant, this

systematic unity (as mere idea) is, however, only a projected unity, which one must
regard not as given in itself, but only as a problem (A647/B675).
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The ideal concepts or principles of such unity are then the product of the ‘hypothetical
use of reason, on the basis of ideas as problematic concepts’, and are ‘not properly
constitutive’ (for ‘constitutive’ in Kant’s sense pertains only to objects of experience).
As Majer (1993a) in particular has emphasized, by employing a ‘method of ideal
elements’ in his proof-theory (regarded as a strictly finite means to prove the consi-
stency of transfinite mathematics), Hilbert expressly tied the use of ideal elements in
mathematics to Kant’s regulative use of ideas. While Hilbert allowed that such elements
could be introduced either through mathematical construction or as axioms,70

the axiomatic method, naturally, prefers the latter. In virtue of their ideality, and
so severance from experience and intuition, axioms play a hypothetical role in cognition,
no longer constitutive of experience but informing and guiding the idea of physical
objectivity.
Thus for Hilbert, the principle of general covariance has shown that the objective

scientific description of nature must transcend experience, even as it begins with experience
and so with sensibility. Experience requires that events are related as cause and effect: for
Hilbert, the principle of causality remains synthetic a priori—a condition of possible
experience in Kant’s sense. However, as we have seen, there is a tension between causality
and general covariance. Theorem I follows (inter alia) from an axiom of general
covariance, which Hilbert viewed as a necessary requirement of physical objectivity, a
postulate governing any fundamental physical theory purporting to describe a mind-
independent nature. But, according to Theorem I, in any such theory an apparent problem
of causal underdetermination immediately arises (see Section 4.2). Hilbert emphasized that
in physical theories prior to general relativity, including special relativity, the initial
data can be freely chosen without explicit regard to special constraints and the relation of
causality is fully determinate because of the fixed background structure of space, and the
unique global direction of time. In generally covariant physics this is no longer possible
once spacetime geometry becomes a dynamical component of the physical theory.
Hilbert’s resolution is to claim that the causal principle, and sensible representation in
general, is a bit of ‘anthropomorphic slag’ that ideally can be jettisoned from the objective
description, but not, on pain of incoherence, from what is given in physical experience as
the determination of future states from past and present ones. Thus, as Hilbert would come
to understand the matter, in any generally covariant theory the initial data must be
specified appropriately so as to allow the univocal determination of future states from
present states. Specifically, the constraint of causality, expressed as the four inequalities
(15) for the gmv, required that events on a given timelike worldline always stand in an
unambiguous causal relation. So these inequalities for the gmv, essentially specifying that x4

is timelike, in fact provide a normal system of equations for the remaining gravitational
potentials.
On this approach, sensible representation (and so representation of causal relations in

space and time) remains as a condition of possible physical experience (ultimately reducible
to measurements with ‘measure threads’ and ‘light clocks’). It is not nature, but the nature
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of our sensibility, that mandates the requirement of ‘proper coordinate systems’ in
restoring univocal determination of the future from the present. Such coordinate systems
nonetheless enable objective assertions about the processes of nature, so long as there
exists a generally covariant formulation of these assertions (see Section 6.6, above). But the
requirement of causality is no longer a condition governing the ideal conception in physics
of a mind-independent world as the object of physical inquiry.

This completes Hilbert’s revision of the Kantian a priori. In the 1920s, Hilbert termed his
revised understanding of the a priori ‘the finite viewpoint’, taking from Kant the
methodology or standpoint that objective cognition can only be understood as conditioned
by a priori structures of the mind, but refashioning the boundaries of the a priori somewhat
differently:

The a priori is thereby nothing more and nothing less than a basic viewpoint or
expression for certain essential preconditions of thought and experience. However,
the boundaries between that we possess a priori on the one hand, and that, on the
other, for which experience is necessary, we must draw differently than did Kant;
Kant far overestimated the role and the scope of the a priori.

We see therefore: in the Kantian theory of the a priori (Apriori-Theorie) there is
still contained anthropomorphic slag (Schlacken), from which it must be freed, and
after such removal only that a priori viewpoint (apriorische Einstellung) is left, which
also lies at the foundation of pure mathematical knowledge: it is essentially that finite
viewpoint characterized by me in different essays (Hilbert, 1930, pp. 383, 385).

In perhaps a hitherto unsuspected manner, Hilbert’s 1915–1917 treatment of gravitation
and electromagnetism within the frame of the axiomatic method provides new evidence for
Majer’s (1993b) claim that

Hilbert’s ‘finite point of view’ is not restricted to mathematics or meta-mathematics,
but is stated as a universal principle of epistemology (p. 191).

9. Conclusions

Theorem I of Hilbert’s First Communication, based on the axiom of general invariance,
provided a purely mathematical diagnostic of the tension between causality and general
covariance appearing as a problem of causal underdetermination. The material cut from
the Proofs is his first attempt at resolving this tension.

The Second Communication (1917) presents Hilbert’s later, and different, attempt at a
resolution. For Hilbert, general covariance is a refinement, first identified as such by
Einstein, of the condition of objectivity that must be placed on fundamental physical
theory, a necessary casting off of the ‘anthropomorphism’ of particular observers and
particular points of view. Its status is that of an ideal regulative principle in the sense of
Kant, governing the image constructed in physical theory of an objective world that is no
longer adequately representable through the senses or by intuition. Hilbert exalts this new
requirement on objectivity by according it axiomatic standing.

Causality, in the physical sense of causal ordering, as other texts of Hilbert make clear, is
no longer itself a principle of objectivity, although it remains a presupposition of
measurement and so, a ‘condition of possible experience’. That it is merely a subjective
condition is shown by Hilbert’s posit of the time-reversal invariance of the fundamental
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physical laws. The principle of causality, as preserved by the coordinate conditions of a
well-posed Cauchy problem, is a lingering but ineliminable constraint on human
understanding, a necessary condition imposed by the mind in structuring experience.
Like the subjectivity of the sense qualities, this requirement of causality is anthro-
pomorphic, having to do not with the objective world but only with our experience of that
world. While the aim of physical science is to eliminate such ‘anthropomorphic slag’ from
its objective descriptions of the world, this goal may not be attainable because of the limits
of human cognition.
The strategy of Hilbert’s Second Communication is to adopt a criterion of physical

meaningfulness and objective validity in terms of general covariance, while recognizing
that human experience (measurement and observation) requires a restricted representation
of space and time for which the causal relation is preserved. This reconciliation, set in the
frame of the Cauchy problem, produced the four coordinate conditions employed to
restore univocal determination of future states from present ones, and the requirement of
causality is accordingly modified.
Hilbert’s approach to, and resolution of, the tension between general covariance and

causality was significantly different from that of Einstein, and it essentially resulted in a
novel amendment of Kantian epistemology of science. Whereas Einstein, distraught at an
apparent abandonment of causality (unique dynamical evolution of the gravitational field
from given sources) required by the ‘hole argument’, abandoned general covariance for over
two years, Hilbert, in the face of the apparent causal underdetermination (diffeomorphic
freedom) of the new generally covariant field physics, considered taking just the opposite
course of action. Having given general covariance axiomatic status, and then, on the basis of
his Theorem I, observing that the Cauchy problem was not well posed, Hilbert contemplated
surrendering causality (in the sense of Cauchy determination). Then, when Hilbert found a
way to restore causality in the face of general covariance (essentially by imposing gauge
conditions), he indeed subordinated causality—as a condition of possible experience—to
general covariance, a superordinate condition of physical objectivity.
In sum, Hilbert’s two communications on ‘Foundations of Physics’ are a complex

epistemological response to general relativity, hitherto unrecognized, and directly tied to
his employment of the axiomatic method.
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Appendix A. A sketch of the Cauchy problem in general relativity

This sketch is based on Adler, Bazin, and Schiffer (1975).
On S we have x4 ¼ 0. Taking the case of the gravitational equations for the vacuum

(Rmv ¼ 0) for sake of simplicity, the initial data on S are the functions

gmn; gmn;4 ðm; n ¼ 1; 2; 3Þ (A.1)

of the three space variables x1, x2, x3. Differentiating within S, the initial data also
determine the quantities

gmn;m gmn;mv gmn;4m. (A.2)

Expressions (A.1) and (A.2) are therefore the Cauchy initial data. The vacuum equations
Rmv ¼ 0 can then be used to compute the second time derivatives of the metric potentials in
terms of this known data, yielding the system of equations

Rmn ¼
1

2
g44gmn;44 þMmn ¼ 0 (A.3a)

Rm4 ¼
1

2
g4ngmn;44 þMm4 ¼ 0 (A.3b)

R44 ¼
1

2
gmngmn;44 þM44 ¼ 0, (A.3c)

where m, n ¼ 1,2,3, and the Mmv can be expressed in terms of the initial data on S (see
further below). The spatial derivatives (indices m, n ¼ 1,2,3) appear quite differently from
the time index 4, and, as one can see, this system of second-order linear equations does not
contain the unknown second time derivatives gm4,44 (m ¼ 1–4) needed to describe the time
evolution of the metric from the data on S. Accordingly, the Cauchy problem in general
relativity is underdetermined because the gravitational field equations do not give gm4,44 in
terms of the initial data. Because of general covariance, this behavior is to be expected,
since the coordinates off S can be transformed arbitrarily, and so unique functions gmv (x

1,
x2, x3, x4) cannot be obtained from the initial data. In particular, the gm4’44 can be chosen
freely, the different choices corresponding to different coordinate systems but describing
the same spacetime geometry. It is to remedy this underdetermination that Hilbert
prescribes the use of ‘proper coordinate systems’, coordinates sufficiently rigid to eliminate
the ambiguities due to coordinate freedom. In particular, we shall see that Hilbert adopted
‘Gaussian coordinates’ (now termed Gaussian normal coordinates) that, in placing the
restrictions

gm4 ¼ 0; g44 ¼ 1, (A.4)

on the gmn throughout spacetime, ensure that the second derivatives (A.4) are always
zero. In effect, this means that a coordinate system is physically acceptable iff one
of its variables x4 is timelike and the other three spacelike, so that g4440. (See further
below.)

But the Cauchy problem is also overdetermined. The system of equations (A.3) consists
of 10 equations for the six unknowns gmn,44 on S itself, and so compatibility requirements
must be imposed on the data Mmv on S. Those restrictions are found by combining the
equations (A.3a) with those of (A.3b) and (A.3c), and then, by reference to the vacuum
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equations in terms of the Einstein tensor Gmv ¼ Rmv $ ð1=2ÞRgmv ¼ 0, rewriting the system
of equations (A.3) in the form

Rmn ¼ 0, (A.5a)

and

G4
m ¼ G4

m ¼ 0. (A.5b)

Then the initial data cannot be given arbitrarily on S but must satisfy the four
‘constraint equations’ (A.5b). These four gravitational field equations are independent of
the gmv,44 and must be solved for the hypersurface S before attempting the Cauchy
problem.
An attempt to construct a unique solution to that problem can now be plausibly

summarized as taking place in three stages.

(i) On the initial spacelike surface S (x4 ¼ x04 ¼ const.), the functions gmn(x
1,x2,x3) and

gmn’4(x
1,x2,x3) are given, satisfying the four constraint equations G4

m ¼ 0. Four
functions gm4’44(x

1,x2,x3) are chosen arbitrarily, while the six functions gmn,44(x
1,x2,x3)

are determined by the vacuum equations Rmv ¼ 0.
(ii) The quantities gmn, gmn’4 and gmn,44 on S now determine g0mn ðx

1;x2;x3Þ,
g0mn;4 ðx

1; x2; x3Þ on the neighboring hypersurface S0ðx4 ¼ x04 þ dx04Þ as

g0mn ¼ gmn þ gmn;4 dx04

and

g0mn;4 ¼ gmn;4 þ gmn;44 dx04.

These quantities are the initial data on S0. The constraint equations (A.5b) are
automatically satisfied on S0 since, if they are satisfied on S, then Gn

m ¼ 0, and
Gn

m;4 ¼ 0, so

G0
4
m ¼ G4

m þ G4
m;4 dx04 ¼ 0.

The four second derivatives g0m4;44 can again be chosen arbitrarily on S0, while the
field equations R0mv ¼ 0 determine the g0mv;44.

(iii) Iterate this process for each successive neighboring hypersurface.

Appendix B. Chronology

Summer 1915: Einstein visits Göttingen and lectures on his approach to finding
a new theory of gravitation

20 November 1915: Hilbert presents his ‘first communication’
25 November 1915: Einstein presents the generally covariant field equations of his

general theory of relativity to the Prussia Academy of Sciences in
Berlin

2 December 1915: Einstein field equations published
4 December 1915: Hilbert’s first presentation of his ‘second communication’
6 December 1915: Date of proofs of Hilbert’s ‘first communication’
26 February 1916: Hilbert’s second presentation of his ‘second communication’
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31 March 1916: Hilbert’s ‘first communication’ published
29 January 1917: Hilbert’s ‘second communication’ published
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