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Abstract

In 1918, Emmy Noether published a (now famous) theorem establishing a general

connection between continuous ‘global’ symmetries and conserved quantities. In fact,

Noether’s paper contains two theorems, and the second of these deals with ‘local’ symmetries;

prima facie, this second theorem has nothing to do with conserved quantities. In the same year,

Hermann Weyl independently made the first attempt to derive conservation of electric charge

from a postulated gauge symmetry. In the light of Noether’s work, it is puzzling that Weyl’s

argument uses local gauge symmetry. This paper explores the relationships between Weyl’s

work, Noether’s two theorems, and the modern connection between gauge symmetry and

conservation of electric charge. This includes showing that Weyl’s connection is essentially an

application of Noether’s second theorem, with a novel twist. r 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

The idea of connecting conservation of electric charge with gauge symmetry goes
back to 1918 and to Hermann Weyl’s attempt to produce a unified theory of
electromagnetism and gravitation by generalising the geometry on which General
Relativity is based (Weyl, 1918a; see also Weyl, 1918b, 3rd edition). It is well-known
that this attempted unification failed, and that Weyl re-applied the gauge idea in the
context of quantum theory in 1929,1 there giving us his ‘gauge principle’ which has

E-mail address: katherine.brading@st-hughs.ox.ac.uk (K.A. Brading).
1The term ‘gauge’ originates from the translation of Weyl’s work into English. A better translation of

the original idea might perhaps have been ‘scale’. The use of the term ‘gauge’ in quantum theory has

nothing to do with scale, of course, and is just an accident of history.
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been so powerful in the latter half of this century.2 According to the standard
account, Weyl’s claim to have connected conservation of electric charge with gauge
symmetry comes to fruition in relativistic field theory.

The question addressed in this paper springs from the following observation.
In his 1918 theory, Weyl introduced local gauge transformations (transformations
that depend on arbitrary functions of space and time), and it is local gauge symmetry
that he connects with conservation of electric charge. According to the standard
modern account, however, global gauge symmetry is invoked to deliver conservat
ion of electric charge (see, for example, Leader & Predazzi, 1996; Ryder, 1985;
Sakurai, 1964; Schweber, 1961; Sterman, 1993; Weinberg, 1995). Which is the correct
symmetry to connect with charge conservation? This question might seem
straightforward on the surface, but it turns out that a rather interesting story
lies behind any satisfactory answer. The story involves a triangle of relation-
ships, none of which has been adequately addressed in the literature. The
relationships are between Weyl’s work, relativistic field theory, and Noether’s
theorems.

In the same year that Weyl published his original paper connecting conservation
of electric charge with gauge symmetry, Emmy Noether published a paper (Noether,
1918) that is now famous for ‘Noether’s theorem’. This theorem makes a general
connection between conserved quantities and continuous symmetry transformations
that depend on constant parameters (for example, a spatial translation in the x-
direction, x-x0 ¼ x þ a; where a is a constant); such a transformation is a global
transformation. This theorem is in fact the first of two theorems proved in the 1918
paper, both of which are derived from a variational problem. The second theorem is
less well-known, and applies to symmetry transformations that depend on arbitrary
functions of space and time, and on their derivatives; such a transformation is a local
transformation.

The first theorem works straightforwardly for the continuous symmetries of
space and time in classical mechanics, giving conservation of linear and angular
momentum, energy, and so forth. However, when we come to gauge symmetry
and conservation of electric charge, things are not so straightforward, since
both theorems come into play. The first theorem applies to global gauge symmetry
and the second theorem applies to local gauge symmetry. In modern relativistic
field theory, the standard account connects conservation of electric charge
with gauge symmetry via Noether’s first theorem. Any connection using Noether’s
first theorem must come by applying it to the global subgroup of the local
gauge group. This leaves us with the following questions: what is the role of
the second theorem in locally gauge invariant theories, and what is the relation-
ship between the second theorem and the first theorem (as applied to the
global subgroup) in such theories? Although Noether’s first theorem has re-
ceived thorough treatment (see especially Hill, 1951; Doughty, 1990), very little
attention has been given to her second theorem (and to cases where both

2Weyl (1929). For a discussion of this 1929 paper, and of the work which preceded it by Schr .odinger,

London and Fock, see O’Raifeartaigh (1997).
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theorems apply). Clarifying the roles of the first and second Noether theorems in
relation to modern relativistic field theory gives us one arm of the triangular
relationship.

The modern-day connection goes via global gauge symmetry, but in 1918 Weyl
claimed to have connected conservation of electric charge to local gauge symmetry.
Despite perennial interest in Weyl’s 1918 work, and the recent revival in interest in
the early history of gauge theory (see especially O’Raifeartaigh, 1997), the
relationship, if any, between Weyl’s 1918 work and Noether’s second theorem has
never been made clear. This is the second arm of the three-way relationship, and we
will clarify it here.

The final arm that will be addressed is between Weyl’s 1918 work and modern
relativistic field theory, where Weyl’s 1918 work is usually said to come to fruition.
Again, despite the interest in Weyl’s 1918 work, the relationship between (a) Weyl’s
1918 connection between local gauge invariance and conservation of electric charge,
and (b) the modern connection between global gauge invariance and conservation of
electric charge, has never been clarified. That it stands in need of clarification is
emphasised by the fact that the latter proceeds via Noether’s first theorem, and the
former does not.

So, the question before us is: which symmetry is the correct symmetry to
associate with conservation of electric chargeFglobal gauge symmetry or
local gauge symmetry? In order to address this question, we begin by stating
Noether’s two theorems (Section 2). We will then see how a careful understanding
of Noether’s two theorems bears on the case of electromagnetism and conserva-
tion of electric charge. In Section 3 we discuss the modern textbook derivation,
and in Section 4 we examine the relationship between Weyl’s work and
Noether’s theorems. Section 5 discusses the relationship between Weyl’s work
and relativistic field theory, and Section 6 tackles the application of Noether’s
second theorem in relativistic field theory. Section 7 takes a brief look at a dis-
tinction made by Noether between ‘proper’ and ‘improper’ conservation laws,
and Section 8 draws all these strands together to address the question ‘Which
Symmetry?’.

2. Noether’s two theorems

Noether’s second theorem is central to the story that will be told in this paper. As
already mentioned, this theorem has received much less attention than the first
theorem. For example, in Emmy Noether: A Tribute to Her Life and Work (Brewer
and Smith, 1981), McShane’s chapter on the calculus of variations discusses the first
theorem in detail but merely states the second theorem without proof or discussion.
In the introduction to Noether’s Collected Papers (Jacobson, 1983), the commentary
on the 1918 paper consists of an extensive quote from Feza Gursey, with no mention
of the second theorem. There is also very little on the second theorem in the standard
history of field theory and gauge theory literature: there is no discussion in
O’Raifeartaigh (1997), Vizgin (1994), Moriyasu (1982) or Hill (1951), for example;
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and, although the second theorem is cited in Kastrup’s excellent 1987 paper, it is not
discussed in any detail. There is, however, a recent paper by Byers (1999) that
discusses the relationship between the second theorem and General Relativity, and
an excellent paper by Rowe (1999) that discusses the historical context in which
Noether came to derive her two theorems (see also Pais, 1987; Sauer, 1999). If we
turn to the physics textbooks, Lanczos (1970) and Doughty (1990) are seminal texts
on variational techniques, Doughty especially giving a detailed and thorough
derivation of Noether’s first theorem using variational principles, but neither
discusses the second theorem. In standard field theory textbooks (such as those cited
in the introduction), Noether’s first theorem is widely cited, but the second does not
appear. The key references for the second theorem in the physics literature are
Utiyama’s (1959) follow-up paper to his 1956 paper on local gauge theories, where
he recognises the connection to Noether’s work,3 and the excellent paper by
Trautman (1962) that discusses the second theorem in the context of General
Relativity. Reviving a more widespread interest in Noether’s second theorem is of
more than historical interest: failure to appreciate the domains of applicability of
these two distinct theorems has given rise to ongoing mistakes and confusion in the
physics literature (see Section 3 and the appendix below for two examples), and
current discussions on conservation of energy in General Relativity would benefit
from a thorough general understanding of the two theorems. Finally, Noether’s
paper is difficult to get hold of in English translation. For these reasons, and because
the substance of this paper requires an accurate reading of Noether’s 1918 paper, I
begin by presenting the content of Noether’s two theorems as given by Noether
herself.

Noether’s theorems apply to Lagrangians and Lagrangian densities depending on
an arbitrary number of fields with arbitrary numbers of derivatives. However, we
will simplify our discussion to consider Lagrangian densities, L; depending on ci;
@mci; and xm; and no higher derivatives of ci; since this is all that we will need for the
purposes of this paper.4 The i indexes each field ci on which the Lagrangian depends.
Noether derives her theorems by considering the following variational problem,
applied to the action S ¼

R
L d4x: We begin by forming the first variation dS; in

which we vary both the independent and the dependent variables (xm; and ci; @mci;
respectively, in our case), we include the boundary in the variation, and we discard

3Utiyama goes beyond the results proved explicitly by Noether in 1918. See Brading and Brown (2001)

where ‘Utiyama’s theorem’ is discussed and where references may be found to current work on the

Noether variational problem falling outside the scope of this paper.
4Noether’s own statement of the two theorems is as follows:

I. If the integral I is invariant with respect to a Gr; then r linearly independent combinations of the

Lagrange expressions become divergencesFand from this, conversely, invariance of I with respect

to a G will follow. The theorem holds good even in the limiting case of infinitely many parameters.

II. If the integral I is invariant with respect to a GNr in which the arbitrary functions occur up to the

s-th derivative, then there subsist r identity relationships between the Lagrangian expressions and

their derivatives up to the s-th order. In this case also, the converse holds.

(In Noether’s terminology, Gr is a continuous group depending on constant parameters, and GNr is a

continuous group depending on arbitrary functions and their derivatives.)
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the second and higher order contributions to the variation. We then require that the
variation is an infinitesimal symmetry transformation, and hence set dS ¼ 0:5

Before we proceed, I need to introduce one piece of terminology and short-hand
notation. Noether derives and presents both her theorems in terms of the Euler
derivative, or what she calls the ‘Lagrange expression’:

Ei :¼
@L

@ci

� @m
@L

@ð@mciÞ

� �
; ð1Þ

which, when set to zero, gives the Euler-Lagrange equations. We will use this
terminology in what follows.

In deriving the consequences of the above variational problem, the first
stepFcommon to both theoremsFis to show that if the action S is invariant
under some group of transformations, thenX

i

Eid0ci5
X

i

@mB
m
i ; ð2Þ

where

1. dxm and dci ¼ d0ci þ ð@mciÞdxm are the infinitesimal variations in xm and ci;
respectively, brought about by the symmetry transformation;

2. d0ci is the change in ci at a fixed co-ordinate: d0ci ¼ c0
iðxÞ � ciðxÞ;

3. B
m
i has the form ðL � @L

@ð@nciÞ
@nciÞdxm þ @L

@ð@mciÞ
dci:

6

Note also that here, and throughout this paper, we use the following conventions:

1. the Einstein convention to sum over Greek indices; all other summations are
expressed explicitly;

2. the symbol ‘5’ to indicate those equations that hold independently of whether or
not the Euler–Lagrange equations of motion are satisfied.

Theorem 1. If the action S is invariant under a continuous group of transformations

depending smoothly on r independent constant parameters ok ðk ¼ 1; 2;y; rÞ;7 then

ð2Þ implies the r relationshipsX
i

Ei

@ðd0ciÞ
@ðdokÞ

5 @mj
m
k ; ð3Þ

5 In this context, a symmetry transformation is a transformation that preserves the explicit form of the

Euler–Lagrange equations. The connection between this symmetry requirement and dS ¼ 0 (which is a

sufficient condition for preserving the Euler–Lagrange equations) is explained in detail in Doughty (1990,

Sections 9:2 and 9:5). It is well-known that this condition may be weakened (see Doughty and especially

Trautman, 1962). For further discussion see Brading and Brown (2001).
6 If the equations of motion are satisfied, the left-hand side of (2) is zero, and we have

P
i @mB

m
i ¼ 0: This

is the expression used for conserved currents by Jackiw et al. (1994). This is undesirable because the dx and

dci then appear in the current, something that can be avoided by proceeding to Noether’s theorems. See

Brading and Brown (2001), for further discussion.
7This is a global symmetry group.
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where j
m
k is the Noether current associated with the parameter ok:

j
m
k ¼

X
i

L �
@L

@ð@nciÞ
@nci

� �
@ðdxmÞ
@ðdokÞ

þ
@L

@ð@mciÞ
@ðdciÞ
@ðdokÞ

: ð4Þ

(Here the ‘d’ in dok does not indicate a variation, but is used to emphasise that we
take infinitesimal ok: I have used this potentially confusing notation so as to
maintain consistency with Doughty (1990) and Weyl (1918a, b).)

From (3), if the equations of motion are satisfied, then there are r continuity
equations

@mj
m
k ¼ 0; ð5Þ

one for every constant parameter ok on which the symmetry group depends.8

As I noted in the introduction, this first theorem is the one that is at work in the
familiar derivations of conservation of linear momentum from spatial translation
invariance and so forth. So, in fact what Noether discusses is not conserved
quantities Qa as such, but currents j

m
k satisfying continuity equations. Textbooks

often move straight from the conclusion that j
m
k satisfies a continuity equation to an

associated claim about Qa being conserved, i.e. from the claim that @m j
m
k ¼ 0 to

ðd=dtÞQk ¼ 0 where Qk :¼
R

R
d3xj0kðxÞ: However, this is valid only for appropriate

boundary conditions.9

Theorem 2. If the action S is invariant under a continuous group of transformations

depending smoothly on r independent arbitrary functions pkðxÞ ðk ¼ 1; 2;y;rÞ and

their first derivatives,10 then ð2Þ implies the r relationshipsX
i

Eiaki5
X

i

@mðEib
m
kiÞ; ð6Þ

where aki and b
m
ki are functions of ci; @mci; and xm; as defined in what follows.

Let dpk and @mðdpkÞ together constitute infinitesimal symmetry transformations
(the d here once again being used to emphasise that we take infinitesimal pk; and not

8To see that jm rather than Bm is the correct Noether current, see Brading and Brown ð2001Þ:
9The integration process from the conserved current to the conserved charge goes via Gauss’ theorem as

follows. First we have: @mjm ¼ 0: Integrating @mjm over a 3-volume R; with t ¼ constant,

Z
R

d3x @mjm ¼
Z

R

d3x @0j0 þ
Z

R

d3x @i j
i ¼

d

dt

Z
R

d3x j0 þ
I

S

dS #nij
i;

where we have used Gauss’ theorem to convert a volume integral
R

R
d3x @i j

i into a surface integralH
S
dS #nij

i:Now, if the fields fall off with distance r such that, as r increases, the net outflow from the region

enclosed by S falls off more quickly than the volume enclosed by S increases, then for sufficiently large r

there will be no net outflow across the surface S; and
H
dS #nij

i ¼ 0: This is our boundary condition, and,

given the continuity equation, it can be met only if the region enclosed by S contains no sources. Then we

have: 0 ¼ @mjm ¼ ðd=dtÞ
R

R
d3x #n0j0 ¼ ðd=dtÞQ:

10This is a local symmetry group. The restriction to the first derivative is again imposed for convenience,

since this is all we need in what follows. Noether states and proves her results with no such restriction.
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to indicate a variation). Then, since d0ci is linear in dpk; we can write

d0ci ¼
X

k

fakidpk þ b
m
ki@mðdpkÞg: ð7Þ

Thus, Noether’s second theorem gives dependencies between the Lagrange
expressions (following Noether’s terminology) (1), and their derivatives. What this
means will become clear when we discuss specific applications of the theorem below.

These are the two theorems as presented by Noether (with our restriction to
L ¼ Lðci; @mci;x

mÞ). It is the first theorem, and not the second, that is explicitly
concerned with conserved quantities.

I turn now to discuss the relationship between the two theorems.
Suppose that the action S is invariant under a continuous group of transforma-

tions depending on r arbitrary functions rðxÞk (a local symmetry group), and that
this group admits of a non-trivial global subgroup (where by global subgroup we
mean a subgroup of transformations for which pk ¼ constant). Then the second
theorem applies to the local invariance group of S; and the first theorem applies to
the global subgroup. The first theorem gives us divergence relations (3) and the
second theorem gives us dependencies between the Lagrange expressions and their
derivatives (6). Noether discusses this case in Section 6 of her paper, and shows that
the divergence relations must be consequences of the dependencies, and in particular
linear combinations of the dependencies.11 She writes (Noether, 1918; translation
taken from Tavel, 1971):

I shall refer to divergence relationships in which the j
m
k can be composed from the

Lagrange expressions and their derivatives in the specified manner as ‘improper’,
and to all others as ‘proper’. (p. 202)

Noether then discusses the specific case of energy conservation in General
Relativity (see Brading & Brown, 2001). For our purposes, the general lesson is that
conservation laws arrived at by applying the first theorem to the global subgroup of
local group are ‘improper’ conservation laws, and we will discuss what this means in
Section 7, below, when we consider the specific case of electric charge conservation.

3. Relativistic field theory and Noether’s first theorem

The standard textbook presentation of the connection between conservation of
electric charge and gauge symmetry in relativistic field theory involves Noether’s first
theorem. It can be found, to various levels of detail, in most quantum field theory
textbooks, such as those referred to in the introduction. All of these books discuss
both global and local gauge symmetry, but none mentions Noether’s second
theorem. For the purposes of simplicity, I begin by focussing on a single presentation
by way of example, that of Ryder (1985). I choose Ryder because his is one of the
more detailed presentations, and because his text is widely used.

11See also Trautman (1962, p. 178) and Brading and Brown (2001).
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Ryder begins by applying Noether’s first theorem to the Lagrangian associated
with the Klein–Gordon equation for a relativistic complex scalar field, Lm:

Lm ¼ @mc@mc
n � m2ccn: ð8Þ

This Lagrangian is invariant under global phase transformations of the wavefunc-
tion, and from this Ryder derives the corresponding Noether current:

j
m
Lm

¼ iðcn@mc� c@mcnÞ: ð9Þ

Integrating this to yield a conserved quantity, Ryder (1985, p. 91) writes: ‘‘This (real)
quantity we should like to identify with charge’’.

What else is needed before we can make this identification? Ryder’s next step is to
observe that Lm is not invariant under local phase transformations of the wave-
function. That is to say, although c-c0 ¼ ce�iy leaves Lm invariant if y is a
constant (i.e. the transformation is global), if y ¼ yðx; tÞ (i.e. the transformation is
local), then the transformation from c to c0 no longer leaves Lm invariant. In order
to create a Lagrangian that remains invariant under a local transformation, we
introduce a ‘four-vector’ Am; and we transform Am jointly with c and cn according to
the following rule:

c-c0 ¼ ce�iqy; cn-cn0 ¼ cneiqy; Am-A0
m ¼ Am þ @my; ð10Þ

where q; the charge on the electron, is introduced as a coupling constant.12 Together,
transformations (10) constitute a gauge transformation. This enables us to construct
a locally gauge invariant Lagrangian. Finally, we add an extra term in Am but not in
c; which is itself locally gauge invariant, giving us our total, locally gauge invariant
Lagrangian

Ltotal ¼ DmcDmcn � m2ccn � 1
4
FmnFmn; ð11Þ

where Dm ¼ ð@m þ iqAmÞ is the covariant derivative, and Fmn ¼ @mAn � @nAm:
From here, there are two main ways in which to proceed. Ryder obtains the
Euler–Lagrange equations for Am; which are identified as the inhomogeneous
Maxwell equations

@nF
mn ¼ jm; ð12Þ

where jm has the form13

jm ¼ iqðcnDmc� cDmcnÞ: ð13Þ

Then, in virtue of the anti-symmetry of Fmn; @m@nFmn vanishes and Ryder concludes
that this modified current jm is the conserved current associated with the Lagrangian
(1). The other way of proceeding is via Noether’s first theorem once again. Notice

12For reasons of overall consistency, I differ from Ryder in placing q in the transformation of c rather

than of Am: This choice corresponds to widespread use.
13This current differs from Ryder’s by a factor of q; due to the placement of q in the gauge

transformation of c rather than of Am (see previous note). The jm quoted here is consistent with Maxwell’s

equations and with widespread usage.
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that Ltotal is invariant under global gauge transformations as well as local gauge
transformations. This global symmetry is a special case of the local symmetry in
which y ¼ yðx; tÞ is set to y ¼ constant: As a result, the gauge transformation leaves
Am invariant and only the wavefunction c changes. If we apply Noether’s first
theorem to the global subgroup of the full gauge group of Ltotal; we obtain the
modified conserved current (13).14,15

One final remark before moving on. Recall that in her paper Noether distinguishes
between ‘proper’ conservation laws and ‘improper’ conservation laws. In Noether’s
terminology, therefore, conservation of electric charge in relativistic field theory,
derived via the first theorem, is an ‘improper’ conservation law. I discuss the
significance of this in Section 7, below.

4. Weyl and Noether’s theorems

The fact that the Lagrangian Ltotal of relativistic field theory is invariant under
the full local gauge group means that Noether’s second theorem comes into
play. Before turning to the application of the second theorem to Ltotal; I want to
look at what Weyl was doing, because it sheds light on the application of Noether’s
second theorem in relativistic field theory. Weyl was clearly claiming to connect
conservation of electric charge to local gauge invariance, and the question at
issue here is what the relationship is between Weyl’s work and Noether. This will
lead us into Section 5, where we discuss the relationship between Weyl’s work and
the standard textbook account discussed in Section 3, and into Section 6, where we
turn to the relationship between relativistic field theory and Noether’s second
theorem.

4.1. Weyl’s 1918 theory

In his 1918 paper ‘Gravitation and Electricity’16 Weyl set out to provide a
unified field theory by generalising the geometry on which General Relativity
is based. Weyl sought to impose a ‘rigorous locality’ by introducing a geometry
in which not only the orientation of vectors may be non-integrable (as in

14 In 1990–91 there was an exchange in The American Journal of Physics (Karatas & Kowalski, 1990; Al-

Kuwari & Taha, 1991) concerning whether local gauge symmetry adds any new Noether charges to those

arising from global gauge symmetry. This exchange deserves a more detailed discussion, but the most

important feature of the correct answer is already evident. Noether’s first theorem applies only to global

symmetries, and the conserved quantities arising in locally gauge invariant theories result from the

application of the first theorem to the rigid subgroup of the gauge group (i.e., to the global symmetry).

Therefore, in the standard approach, the same symmetry is in play in both cases, and the same Noether

charge results.
15The case of Maxwell electromagnetism (i.e. electromagnetism without a gauge-dependent matter field)

and conservation of electric charge is discussed in the appendix. There, I point out that because there is no

non-trivial rigid subgroup in this case, the first theorem cannot be used to derive conservation of electric

charge in this way.
16The English translation referred to here of Weyl (1918a) is in O’Raifeartaigh (1997).
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General Relativity) but also their lengths.17 Having developed his geometry, Weyl
then goes on to discuss its proposed application to physics.18 He writes
(O’Raifeartaigh, 1997):

We shall show that: just as according to the researches of Hilbert,
Lorentz, Einstein, Klein and the author the four conservation laws of
matter (of the energy-momentum tensor) are connected with the invariance
of the Action with respect to coordinate transformations, expressed through
four independent functions, the electromagnetic conservation law is connected
with the new scale-invariance, expressed through a fifth arbitrary function.
The manner in which the latter resembles the energy-momentum principle seems
to me to be the strongest general argument in favour of the present
theoryFinsofar as it is permissible to talk of justification in the context of pure
speculation. (p. 32)

Bearing in mind what we have said so far about Noether’s two theorems, can Weyl
be right that he has connected conservation of electric charge with local gauge
symmetry? In his excellent book on the history of unified field theories, Vizgin (1994)
insists:

In view of the fact that in accordance with Noether’s first theorem conservation
laws must be associated with finite-parameter continuous transformations,
however, it must be recognized that, strictly speaking, neither the energy-
momentum conservation law follows from the invariance of the action with
respect to arbitrary smooth transformations nor the charge conservation law from
gauge invariance. The true symmetry of the charge conservation law was found to
be gauge symmetry of the first kind. (p. 96)19

So what does Weyl actually do? He begins with the action associated with his
unified theory of gravitation and electromagnetism, and an arbitrary variation of the
dependent variables of the associated Lagrangian, vanishing on the boundary. The
form of the action is not given; what Weyl requires is that, discarding boundary terms,

dS ¼
Z

ðWmndgmn þ wmdAmÞ dx; ð14Þ

where dgmn is an arbitrary variation in the metric and dAm is an arbitrary variation in
the electromagnetic vector potential. If we were to set dS ¼ 0 under each of these
arbitrary variations, then we would have two applications of Hamilton’s principle,
with Wmn ¼ 0 and wm ¼ 0 being the resulting Euler–Lagrange equations. Weyl
interprets Wmn ¼ 0 as the gravitational field equations and wm ¼ 0 as the

17For a discussion of Weyl’s background philosophical motivations, and their connection to Husserlian

phenomenology, see Ryckman (2001).
18Weyl’s 1918 theory is of interest for many reasons, including the issue at stake here (the connection

between gauge symmetry and conservation of electric charge). However, it is well-known that Einstein was

quick to point out difficulties with the theory (see Vizgin, 1994, p. 98–104; see also Brown & Pooley, 1999,

Section 5, for a strengthening of Einstein’s critique).
19Gauge symmetry of the first kind is global gauge symmetry.
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electromagnetic field equations, but again their form is yet to be specified.20 In (14)
Wmn and wm are therefore the Lagrange expressions (using Noether’s terminology,
see (1) above) associated with the gravitational and electromagnetic equations
respectively.

Weyl’s purpose here is not, however, to obtain equations of motion via Hamilton’s
principle, but rather to investigate the consequences of imposing local gauge
invariance on the action S: His next step, therefore, is to demand that the arbitrary
variations be infinitesimal gauge transformations depending on the arbitrary
function rðxÞ; and that the action be invariant under such a gauge transformation
(dS ¼ 0). In Weyl’s 1918 theory, a gauge transformation consists of an infinitesimal
scale transformation

dgmn ¼ gmndr ð15Þ

combined with an infinitesimal transformation of the electromagnetic potential

dAm ¼ @mðdrÞ: ð16Þ

Then, with dS ¼ 0 and substituting the gauge transformation (15) and (16) into (14),
we obtain

dS ¼
Z

fWmngmndrþ wm@mðdrÞg dx ¼ 0; ð17Þ

from which followsZ
fWmngmndrþ @mðwmdrÞ � ð@mwmÞdrg dx50; ð18Þ

where once again I use the symbol ‘5’ to indicate that we have not assumed any
Euler–Lagrange equations of motion in deducing this equality. Discarding the
boundary term,

Wmngmndr5ð@mwmÞdr; ð19Þ

hence

Wm
m5@mwm: ð20Þ

This expresses a dependence between the Lagrange expressions associated with the
gravitational field equations and the electromagnetic field equations.

In order to derive conservation of electric charge, Weyl now demands that the
gravitational field equations are satisfied, i.e. Wmn ¼ 0; so that (20) becomes

@mwm ¼ 0: ð21Þ

20 In fact, Weyl chooses his Lagrangian to be L ¼ Ri
jklR

jkl
i as ‘the most natural Ansatz we can make’ for

L: Earlier in the paper he constructed the geometrical curvature components Ri
jkl from considerations of

parallel transport and length-preserving transport of a vector. This splits into two parts, Ri
jkl ¼

Pi
jkl �

1
2
di

jFkl ; where Fkl ¼ 0 characterises the absence of an electromagnetic field (transfer of the magnitude

of a vector is integrable) and Pi
jkl ¼ 0 characterises the absence of a gravitational field (transfer of the

direction of a vector is integrable). As a consequence of choosing this Ansatz, and demanding that dS ¼ 0

under an infinitesimal gauge transformation, Weyl recovers Maxwell’s equations, but not Einstein’s.

Weyl’s gravitational equations are fourth-order (see Weyl, 1918a, in O’Raifeartaigh, 1997, p. 33–34).
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He then inserts the Lagrange expression associated with the inhomogeneous
Maxwell equations21

wm ¼ @nF
mn � Jm ð22Þ

giving

@mð@nFmn � JmÞ ¼ 0: ð23Þ

Then, since the antisymmetry of Fmn guarantees that @m@nFmn50; we obtain

@mJm ¼ 0 ð24Þ

as desired. Notice that this derivation does not involve demanding that the Maxwell
equations are satisfied. Instead, it relies on the gravitational field equations being
satisfied (but not on the explicit form of those equations), and on the fact that the
gravitational equations and the Maxwell equations are not independent of one
another (this lack of independence being a consequence of imposing local gauge
invariance). In other words, there is some redundancy in the total set of field
equations: the conservation law for electric charge can be obtained either from the
Maxwell equations directly, or via the Maxwell–Lagrange expression (22) and the
gravitational field equations.

Having followed a similar derivation for the four energy-momentum conservation
laws,22 Weyl (1918a; p. 33 of the translation in O’Raifeartaigh, 1997) writes:

The five conservation laws can be eliminated from the field equations since they
are obtained in two ways and thereby show that five of the field equations are
superfluous.

This is Weyl’s route to the conservation laws. Clearly, the means by which
he connects conservation of electric charge with gauge symmetry is distinct from
the routes in the modern literature, discussed in Section 3 above. We will
compare these methods in Section 5, but in order to make the comparison precise
we first need to look at the relationship between Weyl’s work and Noether’s
theorems.

4.2. Weyl’s 1918 theory and Noether’s second theorem

Weyl’s derivation is essentially an application of Noether’s second theorem.
In Noether’s second theorem we throw away the boundary terms, as Weyl does, and
we get Eq. (6), where aki and b

m
ki are given by Eq. (7). For Weyl’s theory,

our symmetry transformation depends on the arbitrary function rðxÞ; and in
infinitesimal form we have (15) and (16). Consider first E1 ¼ Wmn: The Lagrange

21One might wonder where Weyl gets the Maxwell–Lagrange expression (22) from. In the 1918 paper,

Weyl simply helps himself to this, but in the third edition of Space Time Matter (see Weyl, 1952, pp. 287–

289) Weyl arrives at this expression via a method which was later used independently by Utiyama (1956,

1959) to derive a theorem applying to all theories with a local gauge-type symmetry structure (see Brading

& Brown, 2001).
22This parallel derivation is discussed in Brading and Brown (2001).
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expression Wmn depends on the metric and so is affected by the infinitesimal
transformation of the metric dgmn ¼ gmndr: So, d0c1 ¼ gmndr and we have a
contribution to only the left-hand side of Noether’s second theorem:

E1a1 ¼ Wmngmn ¼ Wm
m ð25Þ

(where we drop the k-index since the transformation depends on only one arbitrary
function rðxÞÞ: Now consider E2 ¼ wm: The Lagrange expression wm depends on the
vector potential Am and so is affected by the infinitesimal transformation of the
vector potential dAm ¼ @mðdrÞ: So, d0c2 ¼ @mðdrÞ; and we have a contribution to only
the right-hand side of Noether’s second theorem:

@mðE1b
m
1Þ ¼ @mwm: ð26Þ

Therefore, equating (25) and (26), Noether’s second theorem gives us

Wm
m5@mwm;

exactly as Weyl showed in Eq. (20).
Therefore, Weyl’s 1918 connection between local gauge invariance and con-

servation of electric charge begins from an instance of Noether’s second theorem.
He then simply assumes that Wm

m ¼ 0; along with the form of the Maxwell–Lagrange
expression, and this allows him to complete his derivation (see Section 4.1
above). This clarifies the relationship between Weyl’s 1918 work and Noether’s
1918 work.

4.3. Weyl’s 1928–29 work and Noether’s second theorem

In his 1929 paper ‘Electron and Gravitation’ Weyl follows exactly the same
general strategy as in his 1918 work, applying it to his new unified theory of matter
and electromagnetism (as opposed to the 1918 unified theory of gravity and
electromagnetism). He requires that the variation in the action under a local gauge
transformation be zero. Discarding boundary terms this gives us a relation between
the Lagrange expressions for the matter fields and the Lagrange expressions for the
electromagnetic fields. If we then assume that the electromagnetic equations of
motion are satisfied, we are left with a continuity equation from which conservation
of charge can be derived.23 Weyl’s approach to charge conservation in his 1928 book
is slightly different, but once again there is nothing that relies on global gauge
invariance or that resembles an application of Noether’s first theorem. He first
discusses conservation of electric charge as a consequence of the field equations of
matter (p. 214), and only at the end of the section mentions his standard approach.
Here, he states (Weyl, 1928),

The theorem of the conservation of electricity follows, as we have seen, from the
equations of matter, but it is at the same time a consequence of the
electromagnetic equations. The fact that [conservation of electricity] is a
consequence of both sets of field laws means that these sets are not independent,

23For details, see pp. 140–141 of the translation of Weyl (1929) in O’Raifeartaigh (1997).
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i.e. that there exists an identity between them. The true ground for this identity is
to be found in the gauge invariance... (p. 217)

He then sketches his standard derivation, the derivation that is essentially an
application of Noether’s second theorem.

In order to see how a conservation law results from the dependencies of Noether’s
second theorem, it is useful to look at the details of an example. We will do this
below in Section 6, where we apply Noether’s second theorem in the context of
modern relativistic field theory.

5. Weyl and relativistic field theory

We are now in a position to clarify the relationship between Weyl’s work and the
standard modern connection between gauge invariance and conservation of electric
charge, summarising what has been shown in the preceding sections.

Weyl’s 1918 connection between gauge invariance and conservation of charge is
usually thought to come to fruition in relativistic field theory, and in particular through
Weyl’s own re-application of his 1918 ideas in his 1928–29 work. It is true that the
connection between conservation of electric charge and gauge symmetry was first
suggested by Weyl, and that he re-applied it in a new context in 1928–29. It is also true
that this connection now has an established place in modern physics. However, it is not
true that the connection in modern physics is made in the same way as Weyl made it.
The standard account appeals to global gauge invariance and Noether’s first theorem,
yet Weyl never used Noether’s first theorem. Rather, he used local gauge invariance
and (what we have now shown to be an instance of) Noether’s second theorem.

6. Relativistic field theory and Noether’s second theorem

There remains one arm of our three-way relationship which is in need of
clarification: the application of Noether’s second theorem in relativistic field theory.

Recall the Lagrangian for a complex scalar field interacting with an electromagnetic
field, (see Eq. (11)). This Lagrangian has been constructed to be invariant under local
gauge transformations (10), as we have discussed in Section 3. If we apply Noether’s
second theorem (6), we find that c and cn give a contribution to the left-hand side of
(6), and the Am give a contribution to the right-hand side, as we will now see.

Consider first the gauge transformation of c and cn (see (10)). Infinitesimally,
d0c ¼ �iqðdyÞc and d0c

n ¼ iqðdyÞcn: Therefore, the contribution of these fields to
Noether’s second theorem is entirely to the left-hand side of (6), which becomes

@L

@c
� @n

@L

@ð@ncÞ

� �	 

ð�iqcÞ þ

@L

@cn
� @n

@L

@ð@nc
nÞ

� �	 

iqcn: ð27Þ

The contribution of the Am; on the other hand, is entirely to the right-hand side of
(6), since dAm ¼ @mðdyÞ; and that side reads
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@m
@L

@Am
� @n

@L

@ð@nAmÞ

� �	 

: ð28Þ

Noether’s second theorem therefore delivers the following Noether identity:

@L

@c
� @m

@L

@ð@mcÞ

� �	 

ð�iqcÞ þ

@L

@cn
� @m

@L

@ð@mc
nÞ

� �	 

iqcn

5@m
@L

@Am
� @n

@L

@ð@nAmÞ

� �	 

: ð29Þ

In other words, the theorem tells us that not all the Lagrange expressions are
independent of one another, and gives us the interdependency.

There are various ways to proceed from here. Straightforward substitution of the
Lagrangian Ltotal into (29) yields

@m@nF
mn 5 0: ð30Þ

This can be found in the literature (see for example Kastrup, 1987; Byers, 1999),
where the standard claim is that Noether’s second theorem leads to ‘Bianchi-type
identities’ such as (30), so-called after their analogue in General Relativity (see
Brading & Brown, 2001, where further discussion of the significance of Noether’s
second theorem and of the ‘Bianchi identities’ can be found). For our present
purposes, however, there is something more interesting that we can do. We can
return to (29), and follow Weyl’s procedure of demanding that one set of Euler–
Lagrange equations is satisfied. Suppose we assume that the equations of motion for
Am are satisfied. Then, from (29),

@L

@c
� @m

@L

@ð@mcÞ

� �	 

ð�iqcÞ þ

@L

@cn
� @m

@L

@ð@mc
nÞ

� �	 

iqcn ¼ 0; ð31Þ

and substituting into Ltotal we obtain

@mjm ¼ 0; ð32Þ

where jm is the conserved current derivable via Noether’s first theorem (13).
Thus, as in Weyl’s original case, the interdependence between the two sets of field

equations reveals itself in a conservation law. In this case, given local gauge
invariance of the Lagrangian, satisfaction of the electromagnetic field equations is
related to a restriction on the sources, i.e., that electric charge is conserved.24 Notice

24We could also follow Weyl’s general procedure by starting from (29) and assuming that the Euler–

Lagrange equations for c and cn are satisfied. Then, the left-hand side of (29) becomes zero and we obtain

@mð@nFmn þ jmÞ ¼ 0:

But since we know that @mjm ¼ 0 when c and cn satisfy the Euler–Lagrange equations, we have that

@m@nF
mn ¼ 0:

However, following Weyl’s procedure in this case is misleading because the validity of the conclusion does

not depend on the Euler–Lagrange equations for c and cn being satisfied. Rather, it is a consequence of

the anti-symmetry of the Fmn term, and can be extracted using Noether’s second theorem when no Euler–

Lagrange equations are assumed to be satisfied (as we saw earlier in this section).
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that this restriction does not depend on the form of the electromagnetic Euler–
Lagrange equations, but only on the assumption that these equations are satisfied,
whatever their explicit form may be.

7. Proper and improper conservation laws

In Section VI of her paper, Noether refers to a distinction made by Hilbert, a
distinction which she claims is clarified by her work. In theories prior to general
relativity, such as classical mechanics and electrodynamics, the conservation laws are
consequences of the equations of motion of the associated particles or fields. Hilbert
contrasted this with general relativity, remarking that here the conservation of
energy of the matter fields can be obtained without the matter field equations being
satisfied. In Noether’s terminology, conservation of energy in general relativity is an
‘improper’ conservation law, because it follows from satisfaction of the Einstein field
equations, independently of the specific form of those equations and of the Euler–
Lagrange equations associated with the matter fields. The distinction between proper
and improper conservation laws, and the case of general relativity, are discussed in
detail in Brading and Brown (2001) and also in Trautman (1962). Here, we simply
note that conservation of electric charge in locally gauge invariant relativistic field
theory is an improper conservation law, because it follows from local gauge
invariance and the satisfaction of the field equations for Am; independently of
whether the matter field equations (the field equations for c and cn) are satisfied.
This is in contrast to the theory associated with the free complex scalar field,
described by the Lagrangian Lm (see Section 3, above), which is globally gauge
invariant but not locally gauge invariant; in this case, conservation of charge holds
only when the Euler–Lagrange equations for c and cn are satisfied, and it is
therefore a proper conservation law.

8. Which symmetry?

We began with the observation that there is an apparent conflict between the
standard treatment of the connection between gauge symmetry and conservation of
electric charge in relativistic field theory textbooks, and claims made by Weyl, the
father of gauge theory. In the process of addressing this problem, we have clarified
the three-way relationship between Weyl’s work, Noether’s theorems, and modern
relativistic field theory. We have used Noether’s two theorems to show that there are
two routes to conservation of electric charge in locally gauge invariant relativistic
field theory: one is the standard route using global gauge invariance and Noether’s
first theorem, while the other uses local gauge invariance and Noether’s second
theorem.25 The latter route is essentially the method used by Weyl in both 1918 and
1928–29. Therefore, although Weyl was the first to make the connection between
gauge symmetry and conservation of electric charge, his connection is different from

25For a third route, see ‘Utiyama’s theorem’ discussed in Brading and Brown (2001).
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that found in modern relativistic field theory textbooks. Although the standard
textbook route to conservation of electric charge via Noether’s first theorem is
correct, it is subtly misleading in locally gauge invariant relativistic field theory, since
it implies that conservation of electric charge is dependent upon satisfaction of the
equations of motion for the matter fields. In fact, conservation of electric charge can
be derived without the matter field equations being satisfied, using local gauge
invariance and the satisfaction of the electromagnetic field equations instead. In
short, conservation of electric charge in locally gauge invariant relativistic field
theory is a consequence of the lack of independence of the matter and gauge fields
(itself a consequence of local gauge invariance) rather than simply a consequence of
the equations of motion of the matter fields. This understanding of the conservation
law is immediately apparent from Noether’s second theorem and Weyl’s derivation,
but it is an insight that gets lost from the standard textbook point of view.
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Appendix. Maxwell electromagnetismFan apparent mystery resolved

This discussion of Maxwell electromagnetism (by which we mean electromagnet-
ism without a gauge-dependent matter field) is included partly for the sake of
completeness, partly because it is an example of where failure to appreciate the
domain of applicability of the first theorem has led to confusion,27 and partly

26Following the recent death of Professor Lochlainn O’Raifeartaigh, I would like to dedicate this paper

to his memory.
27For example, Lanczos (1970, Chapter XI, Section 20) seeks to apply ‘Noether’s principle’ to Maxwell

electromagnetism in order to derive conservation of electric charge. He is apparently attempting to extend

the first theorem to the domain of the second theorem, where he claims that ‘Noether’s principle’ is

‘equally valid’. His method involves treating the gauge parameter as an additional field variable; whether

or not the derivation is successful, it is certainly not using either of Noether’s theorems.
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because applying the second theorem to this case gives rise to an apparent mystery (a
mystery which is nevertheless quickly dispelled).

For the Lagrangian associated with Maxwell’s equations, the gauge transforma-
tion consists of a transformation of the vector potential Am only:

Am-A0
m ¼ Am þ @my: ðA:1Þ

This means that, unlike in the case of relativistic field theory, there is no non-trivial
global subgroup to which Noether’s first theorem applies. Only Noether’s second
theorem is of interest with respect to Maxwell electromagnetism.

Recall Noether’s second theorem: if the action S is invariant under a continu-
ous group of transformations depending smoothly on the arbitrary functions
pkðxÞ and their derivatives, then Eq. (6) holds where d0ci ¼ akidpk þ bn

ki@nðdpkÞ:
For a Maxwell gauge transformation, with c ¼ Am; we have pðxÞ ¼ yðxÞ; and so in
this case aAm ¼ 0 and bn

Am
¼ dnm: The Lagrange expression associated with Maxwell’s

equations (with sources) is EAm ¼ @nFmn � Jm: Thus, Noether’s second theorem gives
us

@gf½@nFmn � Jm
dgmg 5 @m½@nFmn � Jm
 5 0; ðA:2Þ

from which we conclude via the anti-symmetry of Fmn that

@mJm 5 0: ðA:3Þ

So it appears at first sight that conservation of electric charge follows from Noether’s
second theorem (subject to the usual constraints on boundary conditions) for the
Maxwell–Lagrange expression, with no requirement that the Maxwell equations be
satisfied. On the face of it, the derivation looks rather mysterious: we appear to have
derived conservation of electric charge without requiring that any equations of
motion be satisfied; surely this cannot be right.

The only requirement we have put in is that the Lagrangian be invariant under
gauge transformations. The Lagrangian associated with Maxwell electromagnetism
(with sources) is:

L ¼ 1
4F

mnFmn � JmAm; ðA:4Þ

where Jm is the four-current, assumed to be a function of position.28 Applying a
gauge transformation, we obtain

L0 ¼ 1
4
FmnFmn � JmðAm þ @myÞ ¼ L þ Jm@my: ðA:5Þ

In fact, then, the Lagrangian is not invariant under gauge trans-
formations. However, the extra term picked up makes no difference to the
Euler–Lagrange equations for Am because the extra term has no dependence on
Am: We can therefore regard the transformation as a symmetry transformation.
However, this does not mean that we can apply Noether’s second theorem.
Noether’s second theorem as stated above requires that the Lagrangian be invariant.
In fact, her derivation goes through so long as the Lagrangian is invariant up to a

28Substitution of this into the Euler–Lagrange equations yields the Lagrange expression used above:

wm ¼ @nFmn � Jm:

K.A. Brading / Studies in History and Philosophy of Modern Physics 33 (2002) 3–2220



divergence term.29 Therefore, we can apply Noether’s second theorem only if we
convert the extra term in the transformed Lagrangian to a divergence term. In other
words, we must have that

L0 ¼ L þ @mðJmyÞ: ðA:6Þ

This will only be true if

@mJm ¼ 0: ðA:7Þ

Therefore, the requirement that Noether’s second theorem be applicable implicitly
embodies the restriction that Jm be a conserved current.

In short, although the derivation of the conserved current via Noether’s second
theorem does not involve claiming that the Maxwell field equations are satisfied, it
does involve the prior assumption that Jm is conserved. Thus, the apparent mystery
dissolves: after all is said and done, we are only getting out what we have already
put in.
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