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 Are Gauge Symmetry
 Transformations Observable?
 Katherine Brading and Harvey R. Brown

 ABSTRACT

 In a recent paper in this journal, Kosso ([2000]) discussed the observational status of
 continuous symmetries of physics. While we are in broad agreement with his approach,
 we disagree with his analysis. In the discussion of the status of gauge symmetry, a set of

 examples offered by 't Hooft ([1980]) has influenced several philosophers, including
 Kosso; in all cases the interpretation of the examples is mistaken. In this paper, we
 present our preferred approach to the empirical significance of symmetries, re-analysing
 the cases of gauge symmetry and general covariance.
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 1 Direct and indirect empirical significance

 The notion of symmetry that we are concerned with is defined with respect to

 the laws of motion. Given the laws, specified in terms of dependent and
 independent variables, a symmetry transformation is a transformation of
 these variables that preserves the explicit form of the laws. The issue we

 are interested in is the empirical status of such symmetry transformations.

 Galileo's famous ship experiment (Galileo [1967], pp. 186-8) provides an
 example of where (to an appropriate approximation) a symmetry transforma-
 tion is both physically implementable and directly observable. The transforma-

 tion is implemented via two empirically distinct scenarios of the ship at rest
 and in uniform motion with respect to the shore, and the symmetry is observed

 ? British Society for the Philosophy of Science 2004
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 646 Katherine Brading and Harvey R. Brown

 by noticing that, relative to the cabin of the ship, the phenomena inside the

 cabin do not enable us to distinguish between the two scenarios. We maintain

 that the direct empirical significance of physical symmetries rests on the
 possibility of effectively isolated subsystems that may be actively transformed

 with respect to the rest of the universe.2 This active transformation need not be

 physically implementable in practice (try boosting a planet, for example); the

 point is that we compare two empirically distinct possible scenarios at least

 theoretically, one containing the untransformed subsystem and one the trans-

 formed subsystem.

 The example of Galileo's ship also illustrates that observing a symmetry
 involves two observations, as has been discussed by Kosso ([2000]). He
 writes (p. 85):

 As long as one can claim to be able to observe that the transformation
 prescribed by a particular symmetry has taken place, and that the asso-
 ciated invariance held, then one can claim to be able to directly observe the

 physical symmetry in nature.

 And he goes on (p. 87):

 To observe the transformation is to observe both the unchanged reference

 and the changed system.

 In other words, we first observe the transformation, which involves transforming

 a subsystem with respect to some reference that is itself observable, and we

 then observe that the symmetry holds for the subsystem (p. 86):

 observation of a symmetry will always require two components: One
 must observe that the specified transformation has taken place, and
 one must observe that the specified invariant property is in fact the
 same, before and after.

 In broad agreement with Kosso, we require that two conditions are met in

 order for a symmetry to have direct empirical significance:

 1. Transformation Condition: the transformation of a subsystem of the
 universe with respect to a reference system must yield an empirically
 distinguishable scenario; and

 2. Symmetry Condition: the internal evolution of the untransformed and
 transformed subsystems must be empirically indistinguishable.

 1 See also Budden ([1997]).
 2 Notice that, since our objective is empirical significance, this goes beyond a purely mathematical

 active symmetry transformation. We discuss the case of symmetries of the universe as a whole in
 the final paragraph of this section.
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 Are Gauge Symmetry Transformations Observable? 647

 Not everyone agrees with this account of the empirical significance of
 symmetry. For example, Morrison ([1995], p. 159) writes that 'symmetries...

 should not be viewed straightforwardly as concrete claims about the world,'

 and then goes on to claim that 'Conservation laws provide the empirical
 component or manifestation of symmetries.' Similarly, Sklar ([1996], p. 78)
 endorses the view that

 the invocation of charges is simply another way of stating what the various

 symmetries are. There is a redundancy of the 'theoretical structure' on the
 'observational data' to be explained.

 However, even in cases where a given conservation law is connected to a
 certain symmetry (via Noether's first theorem, say, of which more below),
 the conservation law does not exhaust the empirical manifestation of the

 symmetry.3 Invariance of the dynamical laws under spatial translation, for

 example, is directly manifested by the insensitivity of the dynamical evolution

 of systems to their location. Similarly, the invariance of the dynamical laws

 under boosts4 is directly manifested by Galileo's ship experiment. A symmetry

 of the laws manifests itself directly whenever an active interpretation of an

 effectively isolated subsystem can be operationally instantiated.5

 Since symmetries are defined with respect to the laws, they have not only

 direct empirical significance, but also indirect empirical significance, arising

 from properties of the laws that are connected with symmetries and that

 3 See also Wigner's discussions of the significance of symmetries, Wigner ([1967]).
 4 In modern physics, the Relativity Principle holds between inertial states of motion, related to one

 another by 'boosts' (the form of the transformation depending on whether we are in Newtonian
 or special relativistic physics).

 5 The requirements for observing a symmetry in any particular case are, of course, subtle.
 Crucially, we must be able to prepare an 'effectively isolated subsystem'-i.e. a subsystem of
 the universe whose interactions with the rest of the universe are either negligible or irrelevant with
 respect to the evolution of the untransformed and transformed systems and the symmetry in
 question. This effectively isolated subsystem must then satisfy two further conditions. First, in
 order to observe that the untransformed and transformed systems are empirically distinct, we
 must interact with them. In the case of Galileo's ship, we can simply see that the ship is at rest (or in
 motion) with respect to the shore without disturbing the effective isolation of the ship-we are
 interacting with the ship via the electromagnetic field, but the phenomena inside the cabin
 still display the symmetry. More generally, we are required simply to make observations that
 distinguish empirically between the untransformed and transformed system, and this does not
 have to take place at the same time as the observations of empirical equivalence between the
 evolution of the two systems. For example, we could observe the phenomena inside the cabin of
 Galileo's ship when effectively isolated, and then interact the ship with another system in order to
 show that the state of motion of the untransformed ship differs from that of the transformed ship,
 where that interaction need not preserve the effective isolation of the ship. For example, the ship
 in motion may crash into rocks from which the ship at rest stays a constant distance. Second, we
 must be able to physically implement the active transformation. This does not mean that we
 have to take a single system and transform it, although this might be one way of implementing
 the transformation. Rather, it means being able to set up two systems whose initial conditions
 differ only by the symmetry transformation. If we can do all these things, then we can 'directly get
 our hands on' the associated symmetry.
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 648 Katherine Brading and Harvey R Brown

 themselves have direct empirical significance. In similar vein, Kosso writes

 ([2000], p. 85):

 Indirect evidence of the symmetry, by contrast, amounts to the observa-
 tion of some consequence of the symmetry, but not of the transformation

 and invariance themselves. For example, it is proven by Noether's theorem
 that every continuous, global symmetry is associated with a conserva-
 tion law.6

 This indirect empirical significance is independent of whether any active
 transformation of effectively isolated subsystems can be defined, and consists

 of claims of various different types, both actual and counterfactual; for
 example, if the laws didn't have this symmetry then we would be in a different

 universe, various empirical consequences of the symmetry wouldn't hold,

 and so forth.' Notice also the bearing this has on the issue of the meaning of

 symmetries for the universe as a whole: while symmetries of the universe as a

 whole have no direct empirical significance, they do have indirect empirical
 significance via the laws of physics if these are assumed to hold for any isolated

 system.

 2 Global and local continuous symmetries

 Continuous symmetries come in different varieties, one important distinction

 being between external and internal symmetries. External symmetries involve

 transformations of the space-time coordinates; internal ones do not. Further

 details of this distinction can be found in Kosso's discussion ([2000], p. 84), for

 example.8 Kosso ([ibid.], p. 84-5) also distinguishes between global and local

 symmetries, but here he is not quite careful enough, and since this may be one

 source of problems later in his paper, we will take care to explain the distinc-

 tion clearly here.

 The terms 'global' and 'local' are used in philosophy of physics with a
 variety of meanings. One contrast is between global in the sense of applying

 to the universe as a whole, versus local in the sense of applying to some region

 of the universe. Other examples come from debates concerning locality (and

 non-locality) in quantum theory, and discussions of the concept of locality
 pertinent to relativity theory. In the context of continuous symmetries, and in

 particular gauge symmetries, the contrast between global and local is none of

 6 This statement is subject to certain restrictions; see Section 5, below. Note also that Noether
 proved the converse of her theorem.

 7 Whenever a symmetry is 'observationally complete' (Kosso [2000], p. 88), it can have only
 indirect, and not direct, empirical significance.

 8 For a review of the history of, and philosophical problems associated with, continuous
 symmetries, see Martin ([2003]). See also Castellani ([2002]).
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 Are Gauge Symmetry Transformations Observable? 649

 these. Rather, the terms are used to mark the distinction between symmetries

 that depend on constant parameters (global symmetries) and symmetries that

 depend on arbitrary smooth functions of space and time (local symmetries).

 Examples of global symmetries are the familiar Galilean space-time symmet-

 ries of spatial and temporal translations, spatial rotations, and boosts, along

 with internal global symmetries such as the global phase invariance of the

 Schr6dinger equation for a free particle. The gauge symmetry of electromag-

 netism (an internal symmetry) and the diffeomorphism invariance in General

 Relativity (an external symmetry) are examples of local symmetries, since they

 are parameterised by arbitrary functions of space and time.

 The sense of 'local' here is that intended by Weyl in his 1918 theory (Weyl

 [1918]), where he introduced the idea of local scale transformations. Weyl built

 a theory in which the lengths of two vectors are directly comparable only when

 the vectors are in the same place. If there is no direct way to compare the

 lengths of two spatiotemporally separated vectors, then fixing the length scale

 at one space-time location does not fix the length scale at any other space-time

 location. In contrast, a global length scale is a length scale which, once fixed at

 one space-time point, is fixed everywhere. The same local/global distinction is

 intended by Yang and Mills ([1954], p. 192; our emphasis):

 The conservation of isotopic spin is identical with the requirement of
 invariance of all interactions under isotopic spin rotation. This means
 that when electromagnetic interactions can be neglected, as we shall here-
 after assume to be the case, the orientation of the isotopic spin is of no
 physical significance. The differentiation between a neutron and a proton
 is then a purely arbitrary process. As usually conceived, however, this
 arbitrariness is subject to the following limitation: once one chooses what
 to call a proton, and what a neutron, at one space-time point, one is then not

 free to make any choices at other space-time points.

 It seems that this is not consistent with the localized field concept that
 underlies the usual physical theories. In the present paper we wish to
 explore the possibility of requiring all interactions to be invariant
 under independent rotations of the isotopic spin space at all space-time
 points, so that the relative orientation of the isotopic spin at two space-time

 points becomes a physically meaningless quantity (the electromagnetic
 field being neglected).

 In other words, Yang and Mills intend to implement a local freedom in the
 specification of proton versus neutron, analogous to Weyl's implementation
 of a local freedom in the length scale; fixing what isotopic spin state constitutes

 a proton at one location does not determine all the proton-states everywhere

 else. Of course, once we have fixed the proton state at a given space-time loca-

 tion relative to one nucleon, it is fixed for all nucleons at that space-time
 location.
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 650 Katherine Brading and Harvey R. Brown

 This global/local distinction is between 'the same at every point' and 'freely

 varying from point to point'. In terms of transformations, a global scale

 transformation changes the length scale at every point by the same amount,

 whereas for a local scale transformation the change in the length scale varies

 smoothly but otherwise arbitrarily from point to point. This is the sense of

 global and local that is at work in the terminology 'global gauge transforma-

 tion' and 'local gauge transformation'.

 The Weyl and Yang-Mills distinction clearly differs from that of applying a

 transformation to the universe as a whole versus applying it to a part of the

 universe (or, more generally, to an entire system versus a part of that system),

 and here we reserve the terms 'global' and 'local' for the former distinction.

 The crucial difference between these two distinctions can be seen by consider-

 ing a system consisting of two subsystems. A Weyl-type local scale transforma-

 tion applied to the system allows for one subsystem to be freely rescaled

 relative to the other only when the two subsystems are spatially separated; it

 does not allow us to vary the scale of one subsystem with respect to the scale of

 the other when they are at the same location. How could it? Relative length at

 the same space-time location is directly observable-this was where the Weyl

 argument began. In contrast, a scale transformation of one subsystem with
 respect to another is independent of whether those two subsystems are in the

 same place or not, and can indeed result in a change in the relative scale of the

 two subsystems even at the same space-time location.

 3 Gauge symmetry

 Following an article in Scientific American by G. 't Hooft ([1980]), several
 authors (Auyang [1995]; Mainzer [1996]; and Kosso [2000]) have made a set of
 claims concerning gauge symmetry for which the evidence they cite involves

 variations on the familiar 'two-slits experiment'.

 In the case of local gauge symmetry, the examples concern electrons (the
 matter fields) and the electromagnetic field (the gauge fields). Two claims
 are made:

 (1) local gauge transformations of the matter fields alone (i.e. local phase
 transformations) are not symmetry transformations;

 (2) local gauge transformations of the matter fields plus the gauge fields are

 symmetry transformations having indirect but not direct empirical
 significance.

 Both these claims are correct, but the evidence cited in each case is mistaken,

 and this means that the accompanying interpretation of local gauge symmetry,

 including the understanding of its empirical status, is wrong.
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 Are Gauge Symmetry Transformations Observable? 651

 There is also a problem in the case of global gauge symmetry. The claim

 here is that a global phase transformation is a symmetry transformation, and

 that it has direct empirical significance. However, the evidence cited is, once

 again, mistaken, showing that the understanding of global gauge symmetry is

 flawed. We discuss global gauge symmetry later, but first the local case.

 3.1 Local gauge symmetry

 3.1.1 Discussion of the first claim

 Consider claim (1) above, that local gauge transformations of the matter
 fields alone are not symmetry transformations. This is true. The Schrbdinger

 equation for the free electron is:

 -h2 0
 V2m(xt)=ih- O(x,t) (1.1) 2m at

 and this is not invariant under a local phase transformation of the wavefunc-
 tion for the electron,

 0 --+ ' = eiqO(x,t) (1.2)

 where O(x, t) is an arbitrary function of space and time. This is not in question;

 the problem arises when 't Hooft, Auyang, Mainzer and Kosso appeal to a
 variation on the two-slits experiment with electrons, as described by 't Hooft

 in his 1980 article, as experimental evidence of the failure of invariance.
 However, this experiment cannot be interpreted as the implementation of a
 local phase transformation (1.2), as we will now discuss.

 Let the wavefunction associated with the beam of electrons be I, where for

 each closed loop between source and screen

 1

 T= --1 (0 + 0i) (1.3)
 0, and 0jI being associated with paths through the first and second slits
 respectively. An interference pattern is produced at the screen as a result

 of the phase relations between 01 and 0/lH at each point along the screen. Call
 this interference pattern A. If we now insert a phase-shifter into the path of

 only one component of the wavefunction, say 01, we obtain a new interference

 pattern, say pattern B. According to 't Hooft ([1980], p. 98), this experiment

 constitutes evidence that a local gauge transformation of the matter fields
 alone is not a symmetry transformation:

 a theory of the electron fields alone, with no other forms of matter
 or radiation, is not invariant with respect to a [...] local gauge
 transformation.
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 652 Katherine Brading and Harvey R Brown

 In other words, inserting the phase-shifter into the path of one component of

 the wavefunction is to be regarded as actively implementing a local gauge
 transformation, and there are empirical consequences of this transformation:

 the change in the interference pattern is to be viewed as a failure of local gauge

 symmetry. Kosso ([2000]) uses 't Hooft's example in his discussion of the
 empirical and observational status of local gauge symmetry. He writes (p. 95):

 Passing the one beam through a half-wave plate, for example, while
 leaving the other beam alone, amounts to a local phase shift, that is, a
 gauge transformation. In this way, the active gauge transformation is
 observable.

 Similarly, Auyang ([1995], p. 57) concludes that:

 In the two-slits experiment, the interference pattern changes with a local
 phase change. This means that the free electron Lagrangian is not
 invariant under local phase transformations. The failure of invariance
 is unsatisfactory.

 We believe that this analysis of the experiment is mistaken, and that the
 insertion of a phase-shifter into one path of the two-slits experiment cannot

 be interpreted as a local phase transformation. Introducing a phase-shifter

 into one path results in a new wavefunction (related to a new ray in Hilbert

 space):

 1 1

 = (0I + 11) -"+ '" = (X(ieiA -+- ) (1.4)
 where A is a constant, and the components of the wavefunction have been

 transformed by

 ,OI - - =Ie iA (1.5) 011 - 07' = 011

 Thus, the relative phase of the two components-i.e. of 0, with respect to

 Olr--is changed by a constant amount (i.e., by the same amount at every point
 on the screen, and with no time variation). We use the new wavefunction,xJ",

 to calculate the new interference pattern. Now compare this with a local phase

 transformation of I, where we interpret 'local' in the Weyl sense, which is the

 standard sense in which the terminology 'local gauge transformation' is used.

 A local gauge transformation of the wavefunction has the following form:

 1 1

 'I=1 = (4 + Pn) '"" = eiO(xt) 1(0 + "P) - eiO(xt)1 (1.6)

 This new wavefunction,'I", differs from that obtained by inserting a phase-

 shifter into one component of the wavefunction: ~'" and I" are not the same.

 This is the point, in a nutshell. A local gauge transformation of the matter
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 Are Gauge Symmetry Transformations Observable? 653

 fields (i.e. a local phase transformation) has the form (1.6), and this differs

 from a relative phase transformation which has the form (1.4). The experiment

 described by 't Hooft realises a relative phase transformation, and not a local

 phase transformation.
 If more needs to be said in order to make the point convincing, then the

 easiest way to see that the wavefunctions T"' and V" differ is to focus on what

 happens at the screen, and in particular on the relative phase of 0, with respect

 to O$liat each point along the screen, since this is what gives rise to the interference
 pattern. The expectation values associated with position for I"' and T are the
 same, and so both give rise to the same interference pattern (pattern A). The fact

 that the interference pattern is unchanged is readily seen by noticing that the

 relative phase ?i of with respect to Vbi at any point xl is unchanged, even though
 the overall phase of the new wavefunction differs from that of the original

 wavefunction I point by point. The wavefunction T"', on the other hand, gives

 rise to a different interference pattern (pattern B). The change in the inter-

 ference pattern is due to the change in the relative phase of ?bI with respect to

 01i at each point along the screen. A local gauge transformation, such as (1.6),
 will not achieve this. Local gauge freedom is the freedom to vary the overall

 phase of the wavefunction from point to point, but it is not the freedom to vary

 the phase of V), with respect to 01bi at a single space-time point. Under a local
 gauge transformation, the phase of 4', at some point on the screen will be

 changed by the same amount as the phase of bI at that same point. What we
 need in order to change the interference pattern is a relative phase transforma-

 tion of ?bi with respect to 0ij at each point on the screen.
 One source of confusion might perhaps be that in spatial regions where 0, and

 V) do not overlap, a local gauge transformation (1.6) and a relative phase trans-

 formation (1.4) can be made to coincide by choosing (i) O(x, t) =0 in (1.6)

 throughout that part of the spatial region occupied by V$i, and (ii) O(x, t) = A

 wherever I ispresent. However, an interference pattern occurs only where O1and
 iHi overlap, and clearly these conditions on cannot be met in such a region.

 This may leave a puzzle: how can it be that (1.6) and (1.4) coincide at some

 time t = 0, when the wavepackets associated with ii and 0'I do not overlap,
 but that when we evolve the wavefunction forward we reach different pre-

 dictions for the interference pattern at the screen? The reason is that I" and

 T'". obey different dynamics: V" satisfies the free Schr6dinger equation but TI"'

 does not. In more detail, the situation is as follows. The two wavefunctions I

 and I" give rise to distinct interference patterns, due to the relative phase

 transformation of the components of T (see [1.4]). Nevertheless, both I and

 'I" satisfy the same dynamical equations, the Euler-Lagrange equations
 associated with the Lagrangian for a free complex scalar field, i.e. the free
 Schrddinger equation (1.1). The two wavefunctions I and 9'", on the other
 hand, give rise to the same interference pattern, but does Ji"' not satisfy the
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 654 Katherine Brading and Harvey R. Brown

 free Schr6dinger equation. In order to find equations of motion for X"'
 we have to introduce an additional dependent variable, which (for empirical
 reasons) we associate with the electromagnetic potential; this is the so-called

 gauge principle in action (see Brown [1999]). The Schr6dinger equation for a
 single spinless particle moving in an electromagnetic potential is:

 2mV- A )0 + q 0CV = ih- a 0(1.7) 2mn c 19t

 where A(x, t) is the vector potential and O(x, t) is the scalar potential. This
 equation is not invariant under local phase transformations of the /
 wavefunction alone, but it is invariant under local gauge transformations
 of the form

 V 0' = be'cx
 (1.8) A A' = A + V (1.8)

 where X = X(x, t) is an arbitrary smooth function of space and time. Even in

 the case where there is no electromagnetic field present, a local gauge trans-

 formation involves not only a local phase transformation of the matter fields,

 but also a local gauge transformation of the electromagnetic potential. This

 leads to the different predictions when we evolve forwards from the region

 where ), and O~/ do not overlap to the region where they do.
 In short, then, the experiment described by 't Hooft constitutes a relative

 phase transformation and not a local gauge transformation of the matter fields.

 3.1.2 Discussion of the second claim

 In our discussion of the above case, we introduced the full local gauge tran-

 sformations (1.8) in which the electromagnetic potentials A(x, t) and O(x, t)
 are transformed along with the matter fields 4(x, t). This brings us to the

 second of the claims made by 't Hooft and co., i.e. that local gauge transfor-

 mations of the matter fields plus the gauge fields are symmetry transforma-

 tions having indirect but not direct empirical significance. Once again, the
 claim is correct: first, the transformations (1.8) are symmetry transformations

 of the equation (1.7), and second, these transformations have indirect but not

 direct empirical significance. We will explain the reason why this latter part of

 the claim is true once we have discussed the evidence cited by 't Hooft and co.,

 since their account of why this claim holds depends on that evidence.
 According to 't Hooft ([1980], p. 98), introducing electromagnetism into our

 theory allows us to achieve local gauge symmetry: 'describing the two fields

 together the local symmetry can be extended to both of them.' This is some-

 thing that can be observed, he claims, using the Aharonov-Bohm solenoid.
 The Aharonov-Bohm set-up is described in various textbooks, including
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 Are Gauge Symmetry Transformations Observable? 655

 Ballentine ([1990], Section 11-4). A long solenoid is placed behind the two slits

 and the magnetic field is contained entirely within the solenoid, in the 'shadow'

 region behind the two slits, where the wavefunction does not pass, and further-

 more it is shielded from electrons. Nevertheless, when the electromagnetic field

 is switched on, a change in the interference pattern results, and the field

 strength can be chosen so that we get pattern B. We can also (as Auyang
 does) insert a phase-shifter into one beam so that the relative phase shift due to

 the Aharonov-Bohm solenoid is compensated for by the phase-shifter, and we

 recover interference pattern A. How should these further scenarios be inter-

 preted? Following 't Hooft, Mainzer ([1996], p. 423) writes:

 If the phase is shifted [...] behind only one slit, then the interference
 pattern changes. [...] Thus a local change of the interference pattern is
 realised experimentally. To 'restore the symmetry', a force field must be
 found which compensates for the local change of the phase shift.

 Auyang describes the situation as follows ([1995], p. 56):

 The effect of the local phase shift is compensated by the potential A, of the

 electromagnetic field. [...] At some value of A,, the original interference
 pattern is recovered. This demonstrates that the interacting electron-
 electromagnetic field system can be made invariant under local phase
 transformations.

 As we have seen, the local gauge symmetry of the Schrodinger equation (1.7)

 depends on the introduction of a new dependent variable, which we associate

 with the electromagnetic potential. However, as Auyang herself points out

 (p. 58), the Lagrangian associated with the Schr6dinger equation (1.7)
 is locally gauge-invariant even when the electromagnetic fields happen to

 vanish-the potential could be a fixed flat background potential with which
 no dynamical field is associated, and we would still have a locally gauge-
 invariant theory. Local gauge invariance alone does not require non-zero
 electromagnetic fields (see Brown [1999], especially p. 53). Therefore, the
 presence of a non-zero electromagnetic field cannot be necessary for the
 phenomena to exhibit local gauge symmetry. To put the point another
 way, the result of inserting a phase-shifter into one path in the above
 experiment can be described by the locally gauge-invariant equation (1.7),

 just as well as when the A-B solenoid is added. Local gauge symmetry is
 independent of whether there are electromagnetic fields present.

 It is true that, in the scenario described, a combined transformation of

 matter field (via a phase-shifter) and electromagnetic potential (via the A-B
 solenoid) gives us empirical invariance. But this transformation of the matter

 field and of the electromagnetic potential is not a local gauge transformation.

 What is shown by this experiment is that both the phase-shifter and the
 Aharonov-Bohm solenoid can be used to introduce a change in the relative
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 656 Katherine Brading and Harvey R. Brown

 phase of ),i with respect to /IH, and hence that the electromagnetic field
 strength can be carefully chosen so that the specific relative phase change
 due to a given phase-shifter is cancelled out by the relative phase change

 induced by that particular current through the Aharonov-Bohm solenoid.

 In short, the analysis of the above experiments offered by 't Hooft and co.

 must be mistaken: no local gauge transformation of a system of matter and
 gauge fields can bring an electromagnetic field into (or out of) existence; no

 change in the interference pattern can result from a local gauge transformation.

 What, then, of the claim that local gauge symmetry has only indirect but not

 direct empirical significance? Kosso ([2000]) has argued that local gauge sym-

 metry can be observed only indirectly on the grounds that the insertion of

 a phase-shifter into one path results in a violation of the symmetry, and the

 symmetry can be restored only by adding a new force (electromagnetism) to

 our theory. In this he again follows 't Hooft, and similar arguments are given

 by Auyang ([1995], p. 57-8) and Mainzer ([1996], p. 421-4). As we have seen,

 this analysis and explanation of the status of local gauge symmetry cannot

 be right. The reason why local gauge symmetry has indirect but no direct
 empirical significance lies elsewhere.

 Consider first the question of whether local gauge symmetry has direct

 empirical significance; i.e., is there a 'Galilean ship' analogue for local gauge

 transformations? Consider an effectively isolated system of matter plus gauge

 fields, and transform this relative to some other system, such that the resulting

 scenario is empirically (=observationally = measurably, in this case) distinct.

 The measurable quantities are the relative phase relations between compo-
 nents of the wavefunction of a single system, and the electromagnetic field

 strengths. The latter are unchanged by a local gauge transformation (only the

 potentials, not the field strengths, transform), and so no empirical conse-
 quences can arise. In the former case, the overall phase of one system relative

 to another is not measurable, and so again there can be no observable con-
 sequences of transforming one system with respect to another. The only
 remaining option is to consider a region where the wavefunction can be
 decomposed into two spatially separated components, and then to apply a

 local gauge transformation to one region (i.e. to the component of the
 wavefunction in that region, along with the electromagnetic potential in that

 region) and not to the other. But then either the transformation of the elec-

 tromagnetic potential results in the potential being discontinuous at the
 boundary between the 'two subsystems', in which case the relative phase
 relations of the two components are undefined (it is meaningless to ask what

 the relative phase relations are), or the electromagnetic potential remains
 continuous, in which case what we have is a special case of a local gauge
 transformation on the entire system-and this of course brings us back to
 where we started-such a transformation has no observable consequences.
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 The most fundamental point is perhaps this: in theories with local gauge
 symmetry, the matter fields are embedded in a gauge field, and the local

 symmetry is a property of both sets of fields jointly. Because of this, we cannot

 apply a symmetry transformation to one subsystem of matter fields indepen-

 dently of some other subsystem-we must also transform the gauge fields in

 order for the transformation to be a symmetry transformation, and both
 subsystems of matter fields are embedded in the same gauge fields. Thus, a

 transformation applied to one subsystem will involve the other subsystem,

 even if only because the transformation of the gauge field goes smoothly to the

 identity. In conclusion, there can be no analogue of the Galilean ship experi-
 ment for local gauge transformations, and therefore local gauge symmetry has

 only indirect empirical significance (being a property of the equations of
 motion). We will have more to say about this indirect empirical significance
 in Section 5, below.

 3.2 Global gauge symmetry

 Return to the original two-slits experiment, and now insert identical phase-

 shifters into each path. The result will be an unchanged interference pattern.

 According to 't Hooft, this demonstrates the global gauge invariance of the

 electron field; Auyang, Mainzer and Kosso agree. Kosso ([2000], p. 83) writes:

 This invariance is easily observed, and the experiment as a whole amounts
 to an observation of the internal, global symmetry in nature.

 However, the experiment described does not constitute an observation of
 global gauge symmetry, and this is because it does not meet the first of the

 two conditions required by Kosso himself: we have not observed that a
 transformation has taken place. Mathematically, inserting the phase-shifters

 corresponds to the following transformation:

 1 1

 S= (0e +o(e)O +e+i0 H')
 = e (j9 + lt) = eieo. (1.9)

 Hence, T and V' differ mathematically by an overall global phase.9 However,
 this overall global phase is of no empirical significance: physically, 4 and 4'

 9 Notice that this conclusion rests on the assumption that the electron beam closely approximates a
 plane wave. If we were to consider wavepackets instead, then the insertion of suitably chosen
 dispersive phase-shifters would lead to a delay in the time of arrival of the wavepacket at the
 screen, and hence we would be able to empirically distinguish the case with the phase-shifters
 present from the one without. However, in the case of wavepackets, not only is it extremely
 difficult in practice to preserve the form of the wavepacket as it passes through the phase-shifter,
 but also the resulting wavefunction is not related to the original wavefunction by a global phase
 transformation. The resulting time-delayed wavefunction %I(x,t+ -7) is only equivalent to
 e'I' (x, t) for the case of the plane wave.
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 represent exactly the same quantum mechanical state, indistinguishable in
 every way. This means that a global gauge transformation cannot be used
 to create an empirically distinguishable scenario. Perhaps it will be objected
 that the insertion of the phase-shifters is enough to ensure that the transfor-

 mation of T to V' is physically implemented. But it is not the means by which

 the alleged transformation is carried out that guarantees that we have a
 physical transformation-it is the resulting empirically distinct scenario. An-

 other objection might take the form of a counterfactual: if global gauge
 symmetry were violated, then inserting the phase-shifters would lead to an

 empirically different outcome, but it doesn't, so observing no change is
 equivalent to observing global gauge symmetry directly. But this will not serve

 our needs: if global gauge symmetry were violated, then we would have
 evidence that inserting a phase-shifter changes the physical state of the system;

 in the absence of this, we have no evidence that a"transformation has been

 physically implemented. Criterion (1) for direct empirical significance cannot

 be met, and so the empirical significance of global gauge symmetry is solely
 indirect. 1

 We end by noting a different possible approach to the direct observation of

 a global phase transformation. It might be tempting to interpret the relative

 phase transformation (1.4) as a global phase transformation of 9,1 with respect

 to Tnu, and thereby claim that global phase transformations are directly ob-
 servable in that experiment, rather than in the case where we insert phase-

 shifters into both paths. The crucial issue here is whether the two components

 of the wavefunction, 4'I and T11, can be interpreted as representing genuine

 subsystems of T. Our position is that only 9 represents a physical system, with
 TI representing one (basis-dependent) component of the wavefunction T.

 (If we kill the second component of T [i.e. 'ii], then QI, represents a physical
 system, but now the interference pattern and cannot be observed, and we are

 back to square one.) The point is made particularly vivid by considering a
 single electron passing through the two slits: on our view, there is only one

 system here, described by T, and the components I, and 4'1 do not represent

 subsystems of the electron. The same general point holds even on an ensemble

 interpretation, and-at least in the absence of further argument-it seems that

 ,i and ii, cannot be interpreted as representing genuine subsystems.

 4 Space-time symmetries

 Global space-time symmetries, such as the spatial translations and rotations of

 particle mechanics, have an active interpretation in terms of subsystems of the

 10 This conclusion requires the qualification that we are assuming the absence of a further
 interaction that does not respect the symmetry in question.
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 universe; furthermore, these active transformations are implementable in
 experiments such as the Galilean ship experiment. This much is uncontrover-

 sial. The question arises of whether local space-time symmetries-arbitrary

 co-ordinate transformations that leave the explicit form of the equations of
 motion unaffected-also have an active interpretation. As in the case of local

 gauge symmetry, it has been argued in the literature that the introduction of a

 force is required to 'restore' local symmetry (see Rosen [1990] and Kosso
 [2000]). In the case of arbitrary co-ordinate transformations, the force invoked

 is gravity. Once again, we believe that the arguments (though seductive) are

 wrong, and that it is important to see why.

 Kosso's discussion of arbitrary coordinate transformations is analogous
 to his argument with respect to local gauge transformations. He writes
 ([2000], p. 89):

 Observing this symmetry requires comparing experimental outcomes
 between two reference frames that are in variable relative motion, frames

 that are relatively accelerating or rotating.

 He goes on:

 One can, in principle, observe that this sort of transformation has
 occurred. [...] just look out of the window and you can see if you are
 speeding up or turning with respect to some object that defines a coordi-
 nate system in the reference frame of the ground.

 Then:

 Now do the experiments to see if the invariance is true. Do the same
 experiments in the original reference frame that is stationary on the
 ground, and again in the accelerating reference frame of the train, and
 see if the physics is the same. One can run the same experiments, with
 mechanical forces or with light and electromagnetic forces, and observe
 the results, so the invariance should be observable.

 And he concludes:

 But when the experiments are done, the invariance is not directly observed.

 Spurious forces appear in the accelerating system, objects move sponta-
 neously, light bends, and so on. [...] The physics is different.

 In other words, if we place ourselves at rest first in an inertial reference frame,

 and then in a non-inertial reference frame, our observations will be distin-

 guishable. For example, in the non-inertial reference frame objects that are
 seemingly force-free will appear to accelerate, and so we will have to introduce

 extra, 'spurious', forces to account for this accelerated motion. The transfor-

 mation described by Kosso is clearly not a symmetry transformation. Despite

 that, his claim appears to be that if we move to General Relativity this
 transformation becomes a symmetry transformation. In order to assess this

This content downloaded from 129.74.250.206 on Sun, 18 Sep 2016 20:21:38 UTC
All use subject to http://about.jstor.org/terms



 660 Katherine Brading and Harvey R. Brown

 claim, let's begin by considering Kosso's experiment from the point of view of

 classical physics.

 Suppose that we describe these observations using Newtonian physics and

 Maxwell's equations. We would not be surprised that our descriptions differ
 depending on the choice of coordinate system: arbitrary coordinate transfor-

 mations are not symmetries of the Newtonian and Maxwell equations of
 motion as usually expressed. Nevertheless, we are free to re-write Newtonian

 and Maxwellian physics in generally covariant form. But notice: the arbitrary

 coordinate transformations now apply not just to the Newtonian particles and

 the Maxwellian electromagnetic fields, but also to the metric, and this is
 necessary for general covariance.

 Kosso's example is given in terms of passive transformations-
 transformations of the coordinate systems in which we re-coordinatise the

 fields. In the Kosso experiment, however, we re-coordinatise the matter fields

 without re-coordinatising the metric field. This is not achieved by a mere

 coordinate transformation in generally covariant classical theory: a passive

 arbitrary coordinate transformation induces a re-coordinatisation of not only

 the matter fields but also the metric. The two states described by Kosso are

 not related by an arbitrary coordinate transformation in generally covariant

 classical theory. Further, such a coordinate transformation applied to only
 the matter and electromagnetic fields is not a symmetry of the equations of

 Newtonian and Maxwellian physics, regardless of whether those equations
 are written in generally covariant form.

 With this in mind, let us turn our attention to General Relativity. Suppose

 that we use General Relativity to describe the above observations. Kosso
 suggests that in General Relativity the observations made in an inertial
 reference frame will indeed be related by a symmetry transformation to those

 made in a non-inertial reference frame. He writes ([2000], p. 90):

 The invariance can be restored by revising the physics, by adding a specific
 dynamical principle. This is why the local symmetry is a dynamical sym-
 metry. We can add to the physics a claim about a specific force that
 restores the invariance. It is a force that exactly compensates for the
 local transform. In the case of the general theory of relativity the dyna-
 mical principle is the principle of equivalence, and the force is gravity. [ ...]
 With gravity included in the physics and with the windows of the train
 shuttered, there is no way to tell if the transformation, the acceleration, has

 taken place. That is, there is now no difference in the outcome of experi-
 ments between the transformed and untransformed systems. The force
 pulling objects to the back of the train could just as well be gravity. Thus
 the physics, all things including gravity considered, is invariant from one
 locally transformed frame to the next. The symmetry is restored.

 This analysis mixes together the equivalence principle with the meaning of
 invariance under arbitrary coordinate transformations in a way which seems
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 to us to be confused, with the consequence that the account of local symmetry

 in General Relativity is mistaken.
 Einstein's field equations are covariant under arbitrary smooth coordinate

 transformations. However, as with generally covariant Newtonian physics,
 these symmetry transformations are transformations of the matter fields (such

 as particles and electromagnetic radiation) combined with transformations of

 the metric. Kosso's example, as we have already emphasised, re-coordinatises

 the matter fields without re-coordinatising the metric field. So, the two states

 described by Kosso are not related by an arbitrary coordinate transformation

 even in General Relativity. We can put the point vividly by locating ourselves

 at the origin of the coordinate system: We will always be able to tell whether

 the train, ourselves, and its other contents are all freely falling together, or
 whether there is a relative acceleration of the other contents relative to the

 train and us (in which case the other contents would appear to be flung
 around). This is completely independent of what coordinate system we use-
 our conclusion is the same regardless of whether we use a coordinate system at

 rest with respect to the train or one that is accelerating arbitrarily. (This

 coordinate independence is, of course, the symmetry that Kosso sought in

 the opening quotation above, but his analysis is mistaken.)

 What, then, of the equivalence principle? The Kosso transformation leads

 to a physically and observationally distinct scenario, and the principle of
 equivalence is not relevant to the difference between those scenarios. What
 the principle of equivalence tells us is that the effect in the second scenario,

 where the contents of the train appear to accelerate to the back of the train,

 may be due to acceleration of the train in the absence of a gravitational field,

 or due to the presence of a gravitational field in which the contents of the train
 are in free fall but the train is not. Mere coordinate transformations cannot

 be used to bring real physical forces in and out of existence.

 It is perhaps worthwhile briefly indicating the analogy between this case and

 the gauge case considered above. Active arbitrary coordinate transformations

 in General Relativity involve transformations of both the matter fields and the

 metric, and they are symmetry transformations having no observable con-
 sequences. Coordinate transformations applied to the matter fields alone are

 no more symmetry transformations in General Relativity than they are in
 Newtonian physics (whether written in generally covariant form or not). Such

 transformations do have observational consequences. Analogously, local
 gauge transformations in locally gauge-invariant relativistic field theory are

 transformations of both the particle fields and the gauge fields, and they are

 symmetry transformations having no observable consequences. Local phase
 transformations alone (i.e. local gauge transformations of the matter fields

 alone) are no more symmetries of this theory than they are of the globally
 phase-invariant theory of free particles. Neither an arbitrary coordinate
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 transformation in General Relativity, nor a local gauge transformation in
 locally gauge-invariant relativistic field theory, can bring forces in and out
 of existence: no generation of gravitational effects, and no changes to the

 interference pattern.

 5 Direct and indirect empirical significance again

 In so far as internal global symmetries and local symmetries are perfect
 symmetries (i.e., there are no other interactions that fail to respect the sym-

 metry in question), they have no direct empirical significance, only indirect

 empirical significance. These symmetries are properties of the associated laws

 of motion, and therefore have consequences for the behaviour of systems

 described by these laws. These consequences can be vividly highlighted using

 three theorems that are derivable from a mathematical problem posed by

 Emmy Noether (Noether [1918])." Noether's first theorem is the most famous

 of these theorems, and it connects global symmetries (both external and inter-

 nal) with conservation laws.12 In the same paper, Noether also proved a
 second theorem associated with local symmetries; and, with Noether's assis-

 tance, Klein derived results that are related to a third theorem, which is again

 associated with local symmetries. We call this third theorem the Boundary
 theorem, for reasons associated with its derivation.

 Noether's first theorem relates the global phase symmetry of the
 Schr6dinger equation for a free particle (1.1) to the condition that normal-

 isation must be time-independent. In the case of local symmetry, Noether's

 second theorem and the Boundary theorem demonstrate that the restrictions

 on the possible form of a theory with a given local symmetry are very
 dramatic. For example, in any theory for which (1.8) are symmetry trans-
 formations, we can use Noether's second theorem to show that not all the

 equations of motion are independent of one another:13 this leads to an under-

 determination in the theory which may be removed by opting for a theory in

 which the dynamical fields act non-locally (see Belot [1998] for a detailed

 " This problem can be posed for all theories that can be given a Lagrangian formulation.
 12 In fact, Noether's theorems do not apply to all continuous symmetries of the Euler-Lagrange

 equations, and the connection depends on satisfaction of further conditions. These being met, in
 field theory the theorem connects a linear combination of Euler derivatives with a divergence
 expression, such that if all the fields on which the Lagrangian depends satisfy Euler-Lagrange
 equations, the divergence expression vanishes. This can then be converted into a conservation
 law, subject to suitable boundary conditions being satisfied. See Brading and Brown ([20031).

 13 More accurately, Noether's second theorem tells us that not all the Euler derivatives are
 independent of one another.
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 discussion of this problem in electromagnetism and of the options available).14

 Using the Boundary theorem we can show that the matter fields act as the

 source of the electromagnetic fields, and what the form of the coupling is

 between the matter fields and the electromagnetic potential; we can also derive

 the form of a current that is conserved when either the matter field equations or

 the electromagnetic field equations are satisfied. These and other results of the

 Noether and Boundary theorems are discussed in Brading and Brown ([2004]);

 a discussion of these theorems in relation to general covariance and General

 Relativity can be found in Brown and Brading ([2002]).

 6 Conclusion

 By way of brief conclusion, then, the central point is an important distinction

 between continuous global space-time symmetries and all other continuous
 symmetries. Global space-time symmetries have a special status, both theore-

 tically and practically: theoretically, they have an active interpretation in the

 sense that a symmetry transformation applied to a subsystem of the universe

 yields an empirically distinct scenario; and, furthermore, instances ofthese active

 transformations are implementable in practice through the use of effectively

 isolated subsystems. Neither global internal symmetries, nor local symmetries of

 either variety, have even a theoretical active interpretation of this kind.
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