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1
Introduction

KATHERINE BRADING AND ELENA CASTELLANI

This book is abowt the varicus symmetries at the heast of modem physics. How
chould we understand them and the different roles that they play ? Before embarking
on this investigation, a few words of introduction may be helpful. We begin with a
brief description of the historical roots and emergence of the concepl of symmelry
that is at work in modem physics (section 1), Then, in section 2, we mention the
different varicties of symmetry that fall under this general umbrella, outlining the
ways in which they were introduced inte physics. We also distinguish between two
different uses of symmeiry: symmetry principles versus symmetry arguments, in
section 3 we change tack, stepping back from the details of the various symmelries
10 make some remarks of a general nature concerning the status and significance
of symmetries in physics. Finally, in section 4, we outline the structure of the book
and the contents of each part.

1 The meanings of symmetry

Symmelry is an ancient concept. Its history starls with the Greeks, the term
ougueTpla deriving from ovy (with, together) and pérpoy (measure) and origis
nally indicating a relation of commensurability (such is the meaning codified in
Buclid's Elements, for example). But symmetry immediately acquired a further,
more general meaning, with commensurability representing a particular case: that
of a proportion relation, grounded on (integer) numbers, and with the function of
harmonizing the different elements into a wiitary whole (Ploto, Timaews, ek
The most beautiful of all links is that which makes, of itself and of (he things it connects,
the grestest unity possible; and it ks the proportion (cupperpia) which realizes itin the most
beawtifal way.

From the ovtser, then, symmeiry was closely related to harmony, beauty, and
unity, and this was to prove decisive for its role in theories of nature. [n Plato's

i
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Timaeus, for example, the regular polyhedra are afforded a central place in the
doztrine of natwral elements for the propestions they contain and the bzauty of
their forms: fire has the form of the regular tetrahedron; earth the form of the
cube; air the form of the regular octahedron: water 1he form of the regular icosa-
hedron: while the regular dodecahedron is used for the form of the entire uni-
verse. The history of science provides another paradigmatic example of the vee of
these figures as basic ingredients in physical descrption: Kepler's 1596 Mysterium
cosmographicam presents a planetary architecture grounded on the five regular
solids,

The regular figures used in Plate’s and Kepler's physics for the mathematical
proportions and harmonies they contain (and the related properties and beauty of
their form) are symmetric in another sense that is not related to proportions. In
the language of mademn science, the symmelry of geometrical figures — such as
the regular pelygons and polyhedra - is defined in terms of their invariance un-
cer speciied groups of rotations and refections. Where does 1his definition stem
from? Besides the ancient notion of symmetry used by the Greeks and Romans
(current vatil the end of the Renalssance), 2 different notion of symmetry slowly
emerged in the medem era, grounded not on proportions but on an equality relation.
More precisely, it is grounded on an equality relation between elements that are
opposed, such as the left and right parts of 2 figure, This notion, explicitly rec-
opnized 2ad defined in such terms in 2 1673 text by Claude Perrault, is, in fact,
sothing olher than our reflection symmetry. Refiection symmetry now has a pre-
cise definition in terms of invariance under the group of reflections, representing a
particular case of the group-theoretic notion of symmelry currently used in modern
science.

[n moving from Perrault’s notion to this abstract group-theoretic notion, the
following crucial steps are werth noting. Firsl, we have the interpretation of the
equality of the paris with respect to the whole in the sense of their interchangeability
(equal ports can be exchanged with one another, while preserving the whole). Then,
we have the introduction of specific mathematical operations, such as reflections,
rotations, and translations, that are used 1o describe with precision how the parts
are to be exchanged. As & result, we amive at a definition of the symmetry of
& geomerrical figure in terms of its invariance when equal component parts are
exchanged sccording to one of the specified operations. Thus, when the two halves
of & bilaterally symmetric figure are exchanged by reflection, we recover the eriginal
figure, and that figure is said to be invariant under left-right reflections, This is
known & the ‘crystallograghic notion of symmetry’, since it was in the context
of early developments in crystallography that symmetry was first so defined and
applied. The next key step is the generalization of this notion (o the group-theorenic
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definition of symmetry, which arese following the nineteenth-century development
of the algebraic concept of a group, and the fact that the symmeltry operations of
o figure were found to satisfy the conditions for forming o group.’ Finally, a3 is
discussed in more delail later in this volume (see Castellani, Part IV}, we have the
resulting close connection between the notion of symmetry, equivalence, and group
(& symmetry group induces & partition into equivalence classes).

The group-theoretic notion of symmetry is the eae that has proved so successful
in modem science, and with which the papers of this collection are concemed.
Note, however, thal symmetry remains linked to beauty (regularity) and unity: by
means of the symmelry transformations, distinct (but ‘equal® or, more generally,
‘equivalent’) elements are related to cach ether and to the whele, thus forming a
vegular ‘'unity’. The way in which the regularity of the whole emerges is dictated by
the nature of the specified transformation group. Summing up, a wriry of different
and equal elements is always associated with symmetry, in its ancient or medem
sense; the way in which this unity is realized on the one hand, and how the equal
und different elements are chosen on the other, determines the resulting symmetry
and in what exactly it consists.?

2 Symmetry in the history of physics

When considering the role of symmetry in physics from a historical point of view,
it is worth keeping in mind two preliminary disinctions.

* The Frstis between implicit and explicit uses of the potien. Symmetry consider-
stions have always been applied to the description of natere, but for a long time
in an implicit way only. As we have seen, the scientific netion of symmelry (the
one we are interested in here) is a recent one, (1 we speak about a rele of this
concept of symmelry in the ancient theories of nature, we must be clear that it
was not used explicitly in this sense at that time,

The second is between the two main ways of using symmetry, First, we may
attribute specific symmetry properties to physical sitwations or phenomena, or to
laws (symimeny principles). 1tis the application with respect to faws, rather thae to
objects or phenomena, that has beceme central to modern physics, os we will see,
Second, we may derive specific consequences with regard to particular physical
siluations or pheaomena on the basis of thelr symmetry properties (symwmelry
ArgUMENIE),

A Rroug 5 etz 10 be b s2 Gooogeter Wit o product operation Lo sech that For sy twn eloseals g, arad gy
of G gyegats again an dlement of G the group operamon is sasocaive. the growg conlsins ihe identity elemers,
wd far each slement thece asisis an ioverse,

? Funher detads of the manerial iz this saction can be fosnd in Castellani 120004 chapiens 1-3
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2.1 Symmetry principles

Nawure offers plenty of examples of (approximate) symmetrical forms: the bilateral
symmetry of human (and, in general, of animal) bodies, the pentagonal symmetry
frequent in fRowers, (he hexagonal symmetry of honeycomb cells, the transiational
symmetry of plant shoots and of animals such as caterpillars, and so on, The naw-
ral objects with the richest and most evident symmetry properiies are undoubtedly
crystals, and so it i3 not surprising that the systematic study of all possible sym-
metric configurations - the so-called theory of symmetry - started in connection
with the rise of crystallography. The classification of all symmetry properties of
crystals, which produced its most notable results in the alneteenth century, in fact
marks the first explicit application of the scientific notion of symmetry in science.”
The real eming point inthe use of symmetry in science came, however, with the in-
troduction of the growp concept and with the ensuing developments in the heory of
transformation groups. This is because the group-theosetic definition of symmetry
as ‘invariance under a specified group of transformations’ allowed the concept to
be applied much more widely, not only to spatial figures but also o abstract objects
such as mathematical expressions — in particular, expressions of physical relevance
such as dynamical equations. Moreover, the technicn! apparatus of group theory
could then be transferved and used to great advantage within physical theones.
The first exphioit study of the invariance properiies of equations in physics is
connected with the introduction, in the first half of the nineteenth century, of the
tansformational approach to the problem of motion in the framework of analytical
mechanics. Using the formulation of the dynamical equations of mechanics due to
Hamilton (knewn as the Hamiltomian or canonieal formulation), Jacobi developed a
procedure for arriving at the solution of the eguations of motion based on the strategy
of applying transformations of the variables that leave the Hamiltonian equations
invasiant, thereby transforming step by step the onginal problem into new ones that
are simpler but perfectly equivaltent {for further details see Lanczos, 1949). Jacobi's
canonical transformation theory, although introduced for the ‘merely instumental’
purpose of solving dynamical preblems, led to & very important line of research:
the general study of physical theories in terms of their transformation properties.

! Syweneiry cosvidentions wero used by Haly 10 crasazierzs and classdy coysial siractire asd loesation e
Ris FEQN Teaurd de odadealogie. volame 1), 208 with this, crystailography emergad is a disciphae divinzi from
minzialogy. From Haly's woek tan siands of developaient lad 1o the 32 pout wrensformaron coystal clasees
ard e 14 Braviea lattices, all of whics may be defined in terms of disorete groups. These were combiaed inlo
Qe 230 space groeps by Fedocow and by Schinfies o 1851, and by Barow io 1858 The @eody of discrens
Arougs contipzs o e fandameanial in wlid vate physcs, chamistry, and matenels soieice
Notice that s S a dleas example of 2 methodologiosl use of symmetry propacties: on the basis of ihe svariasce
gropanies of the siunatica weder corsidaration (in this case, e dyramice! prodiem is cdessicel mecharics), 4
sraiegy i epplied for denvieg determinme consequerces. The endedlyieg prinziple is ihal eqeivalen) protlemy

Fave squivaizal sokitions. This type of symmeuy agemenn {see section 22, below) is diwdsiod ales by van
Frazssen (1959}, cragier 10,

-
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Examples of this are the studies of invariants under canonical transformations,
cuch as Poisson brackets or Poincaré’s integral invariants, the theory of continucus
canonical transformations due to Lie; and, finally, the connection berween the study
of physical invariants and the algebraic and geometric theory of invariznis that
fAeurished inthe second half of the nineteenth century, and which laid the foundation
for the geometrical approach to dynamical problems. The use of the mathematics of
group theory to study physical theories was central to the work, early in the twenticth
centery in Goltingen, of the group whese centzal figures were Klein (who earlier
collaborated with Lie) and Hilbert, and which included Weyl and later Noether, We
will return to Weyl and Noether later.

In the sbove approach, the squations or expressions of physical interest are
alrendy given and the strategy is 1o study their symmetry properties. There is, how-
ever, an alternative way of proceeding, namely the reverse: start with specific sym-
metries and search for dynamical equations with such properties. In other words,
we postielate that certain symmedtries are physically significant, rather than deriving
them from prior dynamical equations. The assumption of certain symmetries in
nature is not, of course, n novelty. Althaugh not explicitly expressed as symime-
try principles, the homogeneity and isotropy of physical space, and the uniformity
of tme (forming, together with the wvariance under Galilean boosts, “the older
principles of invarance' ~ see Wigner (1967; this volume, Part 1V)), have been
assumed as prerequisites in the physical description of the world since the beginning
of modern science. Perhaps the most famous early example of the deliberate vse of
this type of symmetry principle is Galileo's discussion of whether the Earth moves,
in his Dialogue Concerning the Two Chisf World Systems of 1632. Galileo sought
1o neutralize the standard arguments purporting to show that, simply by looking
around us at how things behave locally on Earth - how stones fall, how binds Ry —we
can conclude that the Earth is at rest rather than rotating, arguing instead that these
observations do not enable us to determine the state of motion of the Eanh. His
approach was to use an analogy with a ship: he urges us 1o consider the behaviour
of objects, both animate and inammate, inside the cabin of a ship, and claims that
no experiments carried out inside the cabin, withoul reference o anything outside
the ship, would enable us to tell whether the ship is at resl or moving smoothly
zcross the surface of the Earth. The arsumpiion of a symmetry between rest and
a certain kind of motien leads to the prediction of this result, witheut the need
to know the laws govermng the experiments on the ship. The 'Galilean principle
of relativity' (according to which the lnws of physics are invariant under Gzlilean
boosts, where the states of motion considered are now those of uniform velocity ) was
quickly adopted as an axiom and widely used in the seventeenth century, notably by
Huygens in his solution to the problem of colliding bodies and by Newton in his
early work on motion. Huygens took the relativity principle as his thicd hypothesis
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or axiom. but in Newton's Principia it is demoted (0 a corollary 1o the laws of
motion, it status in Newtonian physics therefore being that of a consequence of
the luws, even theugh stremains, in fact, an indepeadent assumption,

Although the spatial and temporal invariance of mechanical laws had been known
and used for along time i physics, and the group of the global spacetime symmetries
for ebectrodynamics was completely derived by Poincaré” before Binstein's famous
1905 paper setting cut his special theory of relativity, it was not until this work by
Einsteinthat the status of symmetries with respect to the laws was reversed. Wigner
(1967; see this volume, Part 1Y) writes that “the significance and general validity
of these principles were recognized, however, only by Einstein’, and that Einstein’s
work onspecial relativity marks ‘the reversal of a trend: until then, the principles of
invariance were derived from the laws of metion . .. [Uis now natural for us Lo decive
ihe laws of nature and to test their validity by means of the laws of invariance, rather
than to derive the laws of invariance from what we believe to be the laws of nature’.
In postulating the universality of the global continuons spacetime symmelries - also
known as 'geomeltrical symmetries” inthe terminology intraduced by Wigner (1967;
see this velume, Part 1) - Einstein’s construction of his special theory of relativily
represenis the fisst turning peintin the application of symmelry o twentieth-century
physics ®

Global spacetime invariance principles are intended to be valid for all the laws
of natere, Sech & universal character is not shared by the physical symmetries that
were next introduced in physics. Most of these were of anentirely new kind, with no
roots in the history of science, and in some cases expressly introduced o describe
specific forms of interaciions ~ whence the name ‘dynamical symmetnies’ due o
Wigner [1967; see this volume, Part 1),

The new symmetries were for the most part closely related 1o specific featres
of the microscopic world, Permutation symmeiry, ‘discovered’ by Heisenberg in
{926 in relation to the indistinguishability of so-called identical quantum particles
(see French and Rickles, this volume), was the first non-spatiotemporal symmeiry
to be introduced into microphysics, and also the first symmelry 1o be treated
with the technigues of group theory in the context of quantum mechanics. The
appleation of the theory of groups and their representations for the exploitation
of symmetries in quantum mechanics undoubtedly represents (he second wming
point v the twentieth-century history of physical symmeties, It s, in fact, in the
Gquaniom context that symmetry peinciples are at their most effective. Wigner and
Weyl were among the first to recognize the great relevance of symmeiry groups
o quarium physics and the first to reflect on the meaning of this. As Wigner

$ L'h‘uu:e 1he tgne “Poenzerd groap Inuodooed Laer by Wigner, wheiees Poncasd raed namead thz grosp after
orene.

* Gensrel relanlvits marks & fusthar Imgomank mage In tho developaient, is we will s2e below. See alue Marta,
this volere.
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emphasized on many occasions, one essential reason for the “increased effectiveacss
of invariance principles in quantur theory” (Wigner, 1967, p. 47 )is the linear nature
of he state space of a quontum physical system, comresgonding to the possibility of
superposing quantum states. This gives rise to, among other things, the possibility
of defining states with particularly simgple transformation properties in the presence
of symmetnes,

In genecal, if G is a symmetry group of a theory describing a physical system
(that is, (he fundamental equations of the theory are invariant under the transfor-
mations of G), this means that the states of 1he system transform into each other
according lo some ‘representztion’ of the group G, In other words, the group trans-
formations are mathemalically represented in the state space by cperations relating
the states to ench other, In guantum mechanics, these operations are generally the
operators scting on (he state space thal correspond to the physical observables,
and any siate of & physical system can be described as a superposition of states of
clementary systems, that is, of systems the states of which transform according to
the ‘irreducible’ representations of the symmetry group. Quantum mechanics thus
offers a particlarly favourable framework for the application of symmetry princi-
ples. The chservables representing the action of the symmetries of the theory in the
state space, and therefore commuting with the Hamiltonian of the system, play the
role of the conserved quantities: furthermore, the basis states may be lnbelled by
the irreducible representations of the symmetry group, which accordingly also
regulate the transformations from one state to another (state lransitions),

But more can be said, Becavse of the specific properties of the quantum descrip-
tion, symmetries such as spatial refection symmetry or pariry {P) and timie reversal
(T were ‘rediscovered’ in the quantum context, laking on a new significance.’
Moreover, new ‘quantum symmetries' emerged, such as particle-ontiparticle sym-
metry or charge conjugation (C).} and the various internal symmetries grounded
on invariances under phase changes of the quantum states and described in terms
of the unitary groups SUIN) (the local versions of which are the gauge symmerries
at the core of the Standard Madel for elementary particles).” More recently, new

" Parity wes istredaced in quasium physics 16 1527 Ina paper by Wigter. whaie Imponast spacircscopic resuins
wereasplaired forthe fust time on e basis of a groupaabecren ireament of permatasen, oilon, and reflecton
symesetries Tire reversel isvizianoes appeared Inhe quarsim comenr, agaa e 10 Wigner, ba o 1912 poper.
Chesge corpupation was istroduced in Diacs fasows 1931 peger 'Quarseed sngulenties inihe eledurcmiagieto
field'. Cis 2 Sacrets syrameiny, cornaziad o 1he spetial aad weaporal discreie symmeines P and T by ihe s
celled CPT theorem, demorsiresad by Luders In 1952, which sanes that the combination of C, . 2and Tis a
gereral syremeiry of payslce! lews,

¥ Tre starmng goit for the 1de of Inermal symeesies was the Imerpeetition of e presence of parecles with
approsimmely) the same vaue of mass as 1o companeess Cvite sl ol a sisgle prysical system, consecied 1o sach
wther by ibe sten<foemations of anunder ying sysuneiry proap Thisides emenged i aralogy with what hesppesed
“aibo case of permastation symetry, and w25 in fact dur 1o Helserberg ithe discoveror ulpermulaton sysmelry ),
whoin g 1902 pepar introdaced ohe SUI) symmetty conreciag the peoton amd $2e meulron (nterpested as the
two savies of 3 wagle system!. Toi symemeliry was focther waded by Wigrer, whao e 1937 mtreduced @e 1erse
troroyie £pin Llatar coninacted 2 ineapia)
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symmetries acquired relevance in theoretical physics, such as supersymmerry (the
symmeltry relating bosons and fermions and leading, when made local, 10 the the-
ories of supergravity). and the various forms of dialiry used in today's superstring
theories.

The history of the application of symmelry principles in quantum mechanics
and then quantum field theory coincides with the history of the developments
of twentieth-century theoretical physics. The salient aspects of this history, from
the perspective of the meaning of physical symmerries, are discussed in the con-
wibetions to this volume (for details, see section 4, below) and cover four crucial
developments,

v The ficst is the extension of the concept of continsous symmetry from ‘global’
symmelries (such as the Galilean group of spacetime transfonmaticns) to ‘local’
symmetries, as discussed by Martin (this volume) in his review of continuous sym-
metries, Einstein was the first to make use of a local symmetry principle in theory
construction when developing his General Theory of Relativity (GTR), culminat-
ingin 1915, Meanwhile in Gétingen, Klein and Hilbert enlisted the assistance of
Noether in their investigations into the stalus of energy conservation in generally
covariont theories of gravitation, This led to Noether's famous 1918 paper con-
1zining two theorems, the first of which leads to a connection between global sym-
metries and conservation Jaws, and the second of which allows & demonstration of
the different status of these conservation laws when the global symmetry group is
a subgroup of some Jocal symmetry group of the theory in question (sce Brading
and Brown, this volume), Prompted by Einstein’s work, Weyl's 1918 ‘unified the-
ory of gravitation and electromagnelism’ extended the idea of local symmetries
{see Ryckman, this volume), and although this theory is generally deemed to have
failed, the theory contains the seeds of later success in the context of guantum
theory {see below).

The second is the extension of the concept of continuows symimetry from spa-
tiotemporal to intemal, both global and local. In quantum theory, the phase of
the wavelfunction encodes internal degrees of freedom. With the requirement that
a theory be invariant under (ocal gauge transformations involving the phase of
the wavefunction, Weyl's ideas found a successful home in quantum theory (see
O Raifeartaigh, 1997). Weyl's new 1929 theory was a theory of eleciromagnetism
coupled to matter. The history of gauge theory is surveyed briefly by Martin (this
volume), who highlights various issues surrounding gauge symmetry, in particulay
the statws of the so-called 'gauge principle’, first proposed by Weyl. Martin also
discusses the ensuing stages in the development of gauge theory, the main steps
being the Yang and Mills non-Abelian gauge theory of 1954, and the problems

¥ See Nonoa {this volume) oo the 'Kreuchman ogjection’ 6 the ghysical sigaificance of gerend covanasde,
ard also Marsia [Ihis volume, 160tion 2.2} o0 CINRRATO0 VML SOvanance.

introduction 5

and solutions associated with the successful development of gauge theories for
the short-range weak and strong interactions.

The third is the increasing importance of the discrete symmetrics of permutation
invariance and C, P, and, T mentioned above.

Firally, the fourth is the introduction in the late 1950s and early 19608 of the
concept of spontancous symmetry breaking in field theory (see Part 111 of this
volume), and the subsequent related results (including the Goldstone 1961 the-
orem and the 1964 so-called Higgs mechanism), which played a crucial role in
the developments of the Standard Model of elementary particles.

2.2 Symumetry arguments

Consider the following cases.

+ Buridan's ass: situated between what are, for him, two completely equivaient
bundies of hay, he has no reason to choose the one located to his left over the one
located 1o his right, 2nd so he is not able o choose and dies of starvation.

« Archimedes’s equilibrium law for the balance: if equal weights are hung at equal
distances along the arms of a balance, then it will remain in equiliboum since
{here is no reason for it 1o rotate one way or the other about the balance point,

+ Anaximander's argument for the immebility of the Earth as reported by Aristotle:
the Earth remains at rest since, being at the centre of the spherical cosmos (and
in the same relation 1o the boundary of the cosmos in every direction), there is no
reason why it should move in one direction rather than another,

VWhat do these cases have in common?

First, they can all be understood as examples of the application of the Leibnizean
Principle of Sufficient Reason (PSR): if there s no sufficient reason for one thing
10 happen instead of another, the principle says that nothing happens {the initial
situation does not change). But there is something more that the above cases have in
common: inench of therm PSR is applied on the grounds that the initizl siteation has
# given symmetry: in the first two cases, bilateral symmetry; in the third, rotational
symmetry. The symmetry of the initial sitvation implies the complete equivalence
between the existing nlternatives (the left bundle of hay with respect 1o the night one,
and so on), If the alternatives are completely equivalent, then there is no sufficient
reason for choosing between them and the initinl situation remains unchanged.

Asrguments of the above kind - that is, drguments leading to definite conclusions
on the basis of an initial symmetry of the situation plus PSR - have been used in
science since antiquily (as Anaximander's argument testifies), The form they most
frequently take is the following: a situation with a certain symmetry evolves in such
away that, in the sbsence of an asymmetric cause, the initial symmetry is preserved.
[nn other words, a breaking of the initial symmetry cannol happen without a reason,
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oF (n aismmeny canno! originate rpontfancoasly. Van Fraassen (1985) devotes a
chapter 1o considering the way these kinds of symmetry arguments can be used in
general problem-solving.

Historcally. the first explicit formelation of this kind of argument in terms of
symmetry is due to the physicist Pierre Curie towards the end of the nincteenth
century. Curie was led to reflect on the question of the relationship between physica!
properties and symmenry properties of a physical system by his studies on the
thermal, electric, and magnetic properties of erystals, these properties being directly
relared 1o the structure, and hence the symmetry, of the crystals studied. More
precisely, the guestion he addressed was the following: ina given physical medium
(for example, a crystalline medium) having specified symmetry properiies, which
physical phenomena (for example, which electric and magnetic phenomena) are
allowsd 10 happen? His conclusions, systematically presented in his 1894 work
“Sur la symércie dans les phénoménes physiques' (sze this volume, Part 110, can be
summarized as follows,

{u} A phenomenon can existina medium possessing its characlensic symmelry or
thatof one of i1 subgrowps. What is nceded for its occurrence (1.¢, for something
rather than nothing to happen) is not the presence, bul rather the absence, of
certain symmetrics: ‘Asymmetry is what creales a phenomenon’.

{h) The symmeiry elements of the causes must be found in their effects, but the
CONVErse is not triee; that is, the effects can be more symmetric than the causes,

Conclusion {a) clearly indicates that Cune recognized the important function
played oy the concept of symmeltry breaking in physics (he was indeed one of the
first 1o recogmize i), Conelusion () Is what is usually called “Cugie’s principle’ in
the litermture, although notice that (2) and (b) are not independent of one another.

In order for Curie's principle 10 be applicable, vanous conditions need to be
satisfied; the cousal connection must be valid, the cause and effect must be well
defined, and the symmetries of both the cavse and the effect must also be well defined
(this involves both the physical and the geometrical propertics of the physical
systems considered). Curie's principle then fumishes 2 necessery condition for
aiven phenomenn to happen: only those phenomena can happen that are compatible
with the symmetry conditions established by the ponciple.

Curie’s principle has thus an important methodological function: on the one
side. it fumishes a kind of selection rule (given an inital siteation with a specified
symmetry, only certin phenomena nre allowed 1o happen). on the other side, it
offers a falsification criterion for physical theories (a violation of Curie's puinciple
may indicate that something is wrong in the physical description).?

"V Ses frmexample. Mach s diszession of the Osrsiad effect 1 his Dle Mecivieit i ibeer Evaefcheing Aistovisch -
Lewlwcadarganisin of £33
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Such applications of Curie's principle depend, of course, on our sccepling iis
validity, and this is something that hos been questioned in the lleratere, espec ially
in relation to spontanecus symmetry breaking (see this volume, Part 1), Ditferent
proposals have been offered for justifying the principle. We have presented it here
as an example of symmetry considerations based on Leibniz's PSR, while Curie
himsell seems to have regarded it as a form of causality principle. Chalmers (1970)
considers its relation to the invarionce properties of physical laws and argues that the
principle follows from these in the case of deterministic laws, a point of view taken
up again and generalized in Ismael (1997). In this approach, Curie’s pricciple is
understood as a condition on the relationship belween the symmetries of a problem
fan equation) and its solution(s). This has the advantages of aveiding the apparent
vagueness of Curie’s formulation (the appeal to causality, and so forth) while also
extending it 1o cover symmetries of physical laws. However, trying to generalize
Curie’s principle os a principle about the link between the symmetries of an equation
and its solutien(s) is not straightforward and requires further attention (for more
on symmelries of laws versus symimetries of solutions, see Belot, this volume, and
Castellani, this volume, Past ().

3 Symmetries of modern physics: their status and significance

What is the status and significance of symmetries and symmetry principles in
physics? The rich variety of symmeiries in modem physics means that such a gen-
eral guestion is not easily addressed, Indeed, we might even wonder whether it is
well posed, and restrict our questions instead to specific symmetries and the inter-
pretational issues they raise, Much of the recent literature opts for such restrictions
on scope, and this is reflected in Parts [-111 of this book (see also section 4 of
this introduction). However, something can be said in more general terms; here we
offer a few remarks in that direction’® and we cefer the reader to Part IV of the
book, where general interpretative issues are addressed,

Exploring the roles and meanings of symmetries is deeply intertwined with ba-
sic questions regarding physical reality and physical knowledge, along with the
methadolegies and guiding strategies of contemporary physical inquiry. Thus, in
approaching the above question we must take into account the possible ontological,
epistemological, and methodological aspects of symmetries, In order 1o do this, we
think that it is helpful to begin by considering the dilferent roles that symmetries
play in physics, the maia four being, in our opinion, classificatory, normative, uni-
fying, and explanatory.

One of the mostimporiant roles played by symmetry is that of clagsificanon - for
example, the classifcation of crystals using their remarkable and varied symmetry

F his saction of the istroduciion is based o Cavellast 12002).
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propernes, Incontemporary physics, the bestexample of this role of symmelry is the
classification of clementary particles by means of the irreducible representations
of the fundamenta! physical symmetry groups, a result frst obtzined by Wigner
in his famous paper of 1939 on the unilary representations ol the inhomogeneous
Lorentz group. [Fa symmetry classification includes all the necessary properties for
characterizing o given type of physical object (for example, all necessary quantum
numbers for characterizing 2 given type of particle), we have the possibility of
defining types of entities on the basis of their transformation properties. This has led
philosophers of science to explore a structuralist approach to the entities of modern
physics, in panticular a group-theoretical account of objects (see for example the
contributions in Castellani, 1998, part 1),

Symmetries also have a normarnive role, being used as constraints on physical
theories. The requirement of invariance with respect 1o a transformation group
imposes severe restrictions on the form that a theory may take, limiting the types
of guantities that may appear in the theory as well as the form of s fundamental
cquations. A famous case is Einstein's use of general covariance when searching
for his gravitational equations.

The group-theoretical weatment of physical symmetries, with the resulting pos-
sibility of unifying different types of symmetries by means of a unification of the
corresponding transformation groups, has provided the technical resources for sym-
meiry 1o play 2 powerful role in theoretical unification, This is best illustrated by the
current — dominant - research programme in theoretical physics aimed at arriving
ot a unified description of all the fundamental forces of nature (gravitanonal, weak,
clectromagnetic, and strong) in terms of underlying local symmeltry groups

[tis often siid that many physical phenomenn can be explained as {more or less
direct) consequences of symmetry principles or symmetry arguments, [n the case
of symmelry principles, the explanatory role of symmelries anses from their place
in the hiecrarchy of the suucture of physical theory, which in lum derives from
(heir generality. For example, an explanatery role for symmetries with respect lo
conservation laws might be claimed on the basis of Noether's connection between
symmelries and conservation Jaws (see Brading and Brown, this velume), aleng
with the more fundamental status of symmetries in the hierarchy. As Wigner de-
scribes the hicrarchy (Wigner, 1967; see especially the second extract in Part IV
of this volume}, symmetries are seen as properties of the laws, Thus, through the
requirement that the laws (whatever they may be) must be invariant under certain
symmetries, these symmetries place constraints on which events are physically
possible (the explanatory role clearly connects to the normative role here). In other
words, symmetries may te used 10 explain (1) the form of the laws and (ii) the
occurrence (or non-occurrence) of certain events (this latter in a manner annlogous
o the way in which the laws explain why certain events occur and not others). Other

e
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fealures of symmetry in physics that are commonly used as an important explana-
tory basis for physical phenomena are the *gauge principle’ (for the form, or even
existence, of the various interactions: see Martin, this volume) and the mechanism
of ‘spontancous symmelry breaking (see this volume, Part 1[1). Finally, insofar as
explanatory power may be denived from unificziion, the unifying role of symmeiries
also resulls in an explanatory role.

[y the latter case, ic. that of symmelry asguments, we may, for example, appeal
to Curie's principle to explain the occurrence of certain phenomena on the basis of
the symmetries (or asymmelries) of the situation, as discussed in section 2.2 above,

From these different roles we can draw some preliminary conclusions about the
s1atus of symmetries, 1t is immediately apparent that symmetries have an impor-
tant hewristic function, indicating a strong methodological status, What about the
ontelogical and epistemological status of symmetries?

Adopting an onfological view, symmetries are seen as a substantial part of the
physical world: the symmelries of theorics represent properties existing in nature,
or characterize the structure of the physical world, 1t might be claimed, furthermore,
that the ontological status of symmetries provides the reason for the methodelogical
success of symmerries in physics, A concrete example is the use of symmetrics to
predict the existence of new particles. This can happen vin the classificatory role,
cn the grounds of vacant places in symmeuy classification schemes, as in the
fameus case of the 1962 prediction of the particle €27 in the context of the hadronic
classification scheme known as the ‘Eightfold Way'. Or, as in more recent cases,
via the unificatory role: the paradigmatic example is the prediction of the W and
Z particles (experimentaily found in 1982) in the context of the Weinberg-Salam
gauge theory proposed in 1967 for the unification of the weak and electromagnetic
interactions.’ These impressive cases of the prediction of new pheromena might
perhaps be used to argue for an entological status for symmetries, vin an inference
1o the best explanation,

Another reason for auribuling symmetries (o nature is the so-called geometncal
interpretation of spatiotemporal symmetries, according to which the spatiotemporal
symmeiries of physical laws are interpreted as symmetries of spacetime itself, the

‘geometrical structure’ of the physical world. Moreover, this way of seeing symme-
tries can be extended to non-extemal symmetries, by considering them as properties
of other kinds of spaces, usually known as 'internal spaces’. The question of exactly
what a realist would be committed to on such a view of intemal spaces remains cpen,
and an interesting topic for discussion - in this regard see Nounou, this volume,

One approach 1o investigating the limits of an ontolegical stance with respect to
symmetries would be 1o investigate their empirical or observational status: can the

¥ The urificamory role of symseines in phyvacs is aisolizied Wl & moee genzral reallst metaghysos influential
arrorgst theorelical physicists workieg wsands o unided reory of everydlng.
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symmetries in question be directly observed? Mormison (this volume) raises con-
cerns zbout a realist approach for the case of spontancously broken symmetries,
and the question can also be tackled for symmetries that are not spontaneously
broken. We first have to address what it means for a symmetry to be observable,
and indead whether all {unbroken) symmetries have the same ebservational sta-
we. Kosso (Z000) arrives 2t the conclusion that there are important differences
in the empirical status of the different kinds of symmetries. In particular, while
global continuous symmetries can be directly observed ~ via such experiments as
the Galilean ship experiment — a local continuous symmelry can have only indirect
empincal evidence, Brading and Brown (in press) argue for & different interpreia-
tion of Kosso's examples, ' and hence for 2 different understanding of why the local
symireisies of gauge theory and GTR have an empirical stats distinet from that
of the familiar global spacesime symmetries, The most fundamental point is 1his:
in thearies with local gauge symmetry, the matter ficlds are embedded in a gauge
Feld, and the local symmetry is a property of both sets of felds joinrly. Because
of this there is, in general, no analogue of the Galilean ship experiment for local
symmetry transformations; according to Brading and Brown, the continucus global
spaceime symmetries have a special empirical status.'

The direct observational status of the familiar global spacetime sy mmelries leads
us to &0 epistemological aspect of symmetries, According o Wigner, the spatiotem-
poral invariance principles play the role of a prerequisite for the very possibility of
discovering the laws of nature: “if the correlations between events changed from
day today, and would be different for different points of space, it would be impos-
sible to discover them” (Wigner, 1967, see this volume, Part IV). For Wigner,
this conception of symmetry ponciples is essentially related to our ignorance
(ifwe could directly know all 1he lnws of nature, we would not need to use symmetry
prnciples in our search for them), Others, on the contrary, have arrived ata view ac-
cording to which symmetry principles function as ‘transcendental principles” in the
Kantian sense (see for instance Mainzer, 1996). 1t should be noted in this regard that
Wigner's slarting point, as quoted above, does nat imply exact symmelries - all that
is needed epistemologically is that the global symmetries hold approximately, for
suitable spatictemporal regions, such that there is sufficient stability and regularity
in the events for 1he laws of nature to be discovered,

There is another ceason why symmetries might be seen as being primarily episte-
mological. As we have mentioned, there is a close connection between the nations
of symmetry and equivalence, and this leads also 1o a notion of irmelevance: the
equivalence of space points (transiatienal symmelry) is, for example, understood
in the sense of the irrelevance of an absolute position to the physical desceiption; in

: Koso's aralysls begins o 1 set of examples offeced by 't Heoft {1980,
'* Seq dvo Bradicg and Brosn, this wlese,
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the case of loca) symmetrics the irrelevant elements correspond to the presence of
“surplus structure’ in the theory.'® There are (wo ways that one might interpret the
epistemological significance of this: on the one hand, we might say (hal symmetries
are associated with unavoidable redundancy in our descriptions of the world, while
on the other hand we might maintain that symmetries indicate a limitation of our
epistemic access ~ these are cerfain properties of objects, such as their absolule
positions, that are not observable.

Finally, we would like to mention an aspect of symmetry that might very naturally
be used to support either an ontological or an epistemclogical account. It is widely
agreed thal there is a close connection belween symmetry and objectivity, the
starting point once again being provided by spacetime symmetries; the laws by
means of which we describe the evolution of physical systems have an objective
validity bacause they are the same for all observers. The old and natural idea that
what is objective should not depend upon the particular perspective under which it
is taken into consideration s thus reformulated in the following group-theoretical
terms: what is objective is what is invariant with respect to the transformation groug
of reference frames, o, quoting Wey) (1952, p. 132), ‘objectivity means invariance
with respect to the group of automorphisms [of space-time]’. The link between
symmetry and objectivity is one iheme of the paper by Kosso in Part 1V of this
volume.

Summing up, symmelries in physics offer many interpretational possibilities,
including ontological, epistemological, and methodological. The position that one
takes will depend in part on one's preferred approach Lo other issues in philosophy of
science, including realism, the laws of nature, the relationship between malhematics
and physics, the nature of theoretical entities, and so forth, It will also depend on
whether one views symmetries as ultimately fundamental or derivative (be that
in n methodological sense or, al the other extreme, an ontological sense). How to
understand the status and significance of physical symmetrics clearly presents a
challenge to both physicists and philosophers,

4 Structure of the book

Our aim in this book is to provide a structured picture of the current philosophy of
physics debate on symmetry, along with a conteat and framework for future debate
and research in this held. As such, the aim is modest; there is no intention or aspi-
ration le provide a comprehensive discussion of all philosophical issues that might
arise from the reles of symmetries in physics. Rather, the content of this book clearly
displays the issues that dominate current discussions in philosophy of physics,

18 See Belor ard Cestellant. both this wolimse, Pat IV, azd ulw Redhead's “warplus stractice,” @is selume. Pan |
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We have divided the book into four parts, each of which begins with a selection of
classic texts from such awthors as Leibniz, Kant, Curie, Weyl, and Wigner. The first
three parts of the book concern specific topics falling under the generl heading of
symmetry in physics: coptinuous symmetries, discrete symmetries, and symmetry
breaking. Fach contuins a paper that reviews the current simation in the Lteratre
and highlights the main issues and controversies, Part [V 1s devoted to the general
interpretational questions anising in connection with symmetries,

Partd Among the issues raised by Martin in his review of continuous symmetries,
the one that deminstes the papers that follow is a set of interrelated questions
surrounding the interpretation of local symmetries. Martin himself spends some

ume addressing the statss of the se-called ‘gavge principle’, whose origing in

Weyl's 1918 work — and particularly the philosophical background to this work —
are the subject of Ryckman's paper. Brading and Brown pick up the histoncal
thread with a discussion of Noether's 1918 theorems and the connection between
symmetries and conservation laws. While their paper containsg Neether's famous
first theerem, concerning global symmetries, they also discuss the more complex
case of local symmetries and the question of where the empirical significance of such
symmelries lies. A theme common 1o the papers by Norton, Rechead, Earman, and
Wallace is the ‘underdetermination problem’ associnted with theories containing
local symmetries. These papers discuss how this problem arises (with respect both
to the diffeomorphism freedom of GTR and to gauge theories), what interpretational
problems follow, and how these may be tackled, The underdetermination problem
is connected to the issue of which quantities in & local gauge theory should be
interpreted as real. This problem is made particelarly vivid by the Aharonov-
Bohm effect; Nouncu offers a discussion of this effect, in which she sets out her
preferred approach based on the fibre bundle formulation of gauge theories - her
paper contains a conceplual introduction to fibre bundles, designed o make the
philosophical account accessible,

Pare I, Under the general heading of discrete symmetries we find two distinl areas
of research, each of which has a large associated literature. The first is permutation
symmetry, reviewed by French and Rickles, The second is CPT, or rather, in fact,
primanly P In the philosophy of physics Lteratre, parity (and parity violation) at
the level of the fundamental laws has been the focus of attention, the absolute versus
relational debate in the philosophy of space and time being the context. This is the
topic of Pooley's review paper. Themes arising in these review papers are picked
up by both Huggett and Saunders, Huggett's first paper extends the French and
Rickles discussion from bosons and fermicns 1o other kinds of quantum particles
("guarticles'), while his second paper is a direct response to the discussion of
handedness in Pealey’s paper, Saunders advocates a version of Leibaiz's Prnciple

P o o o
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of the [dentity of Indiscemibles that appeals to "weak discerntbihty’. which is a
natural generalization of Leibniz's law and, he argues, consistent with, and a useful
too! with respect to, modern physics.

Part 11, Philosophers have come (o the topic of symmetry breaking only recently,
and hence the main purpose of the review paper by Castellani 15 1o provide an
introduction and & framework for further work. We also include an extract from
a paper by Jona-Lasinio, offering a first-hand historical accoum of how the iden
of spontaneous symmetry breaking was introduced in particle physics in (he early
1960s. [n his ‘Reugh guide’ Earman offess an approach to understanding symmetry
breaking that makes use of the algebraic formulation of quantum theory, while
Morrison's paper ralses interpretational questions over the status of spontanzously
broken symmetries,

Part IV The final part contains a selection of papers by lsmael and van Fraassen,
Belol, Kosso, and Castellani on genera! issues of the interpretation of symmetry.
They pick up on is3ues ranging right across the material of the preceding parts, such
us those of redundancy and surplus structure, symmetries of laws versus symmetrnies
of sclutions, and the relationship between symmetry and objectivity,

Our hope is that this volume will appeal to a wide audience, including philoso-
phers of physics, philosophers of science, and physicists. It offers something for
everyone who is curious about symmetries in physics, providing a research tool s
well as a point of access into this fascinating asea.
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