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The variational problem posed by Emmy Noether in her seminal 1918 paper leads
to three theorems, two of which she presents in that paper and the third of which is
due to F. Klein, also in 1918.1 The origins of these theorems lie in the discussions of
Klein, Noether, D. Hilbert and A. Einstein over the status of energy conservation in
generally covariant theories such as General Relativity. In this paper I will outline one
thread of this discussion and show how the three theorems of Noether and Klein can
be brought to bear. The particular thread of interest begins with Klein’s observation
(in his response to Hilbert’s (1916) first note on the foundations of physics) that the
energy conservation law associated with Hilbert’s energy vector is a mathematical
identity, in constrast to the familiar energy conservation laws of mechanics which are
not identities.2 These two aspects—the claim that energy conservation is an identity,
and the claim that this marks a contrast with other theories—are picked up by Hilbert
and by Einstein, and are the subject of this note.

8.1 Historical Background

Klein’s 1917 response to Hilbert3 includes a section specifically on Einstein’s theory
(Klein 1917, 476–477, comment 9) in which he considers the energy conservation law
found in Einstein’s 1916 paper “Die Grundlagen der allgemeinen Relativitätstheorie,”
consisting of the vanishing of the divergence of two terms:

∂ν(T
ν
σ + tνσ ) = 0 (8.1)

where T νσ and tνσ are the so-called energy components associated with the electromag-
netic and gravitational fields, respectively. Using the field equations, the “energy,” can
be re-written as:

T νσ + tνσ = −∂ρ
(
∂G∗

∂gμσ,ρ
gμν
)

(8.2)
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where G∗ is the gravitational Lagrangian depending on the gμν up to first derivatives
only (see Einstein 1916). Einstein and Klein agree that the divergence of the right-hand
side of (8.2) vanishes as an identity:

∂ρ∂ν

(
∂G∗

∂gμσ,ρ
gμν
)

≡ 0. (8.3)

However, for Klein this further implies that (8.1) holds as an identity. He points out
the relationship between Einstein’s terms T νσ and T νσ and those appearing in his own
treatment, and concludes that Einstein’s energy conservation law is therefore an “iden-
tity.”

In 1917 Klein had begun a correspondence with Einstein,4 and on 13 March 1918
Einstein writes to Klein beginning his letter as follows:5

Highly esteemed Colleague,
It was with great pleasure that I read your extremely clear and elegant expla-
nations on Hilbert’s first note. However, I do not find your remark about my
formulation of the conservation laws appropriate. For equation (8.1) is by no
means an identity, no more so than (8.2); only (8.3) is an identity.

Klein replies to Einstein immediately (20 March 1918),6 attempting to clarify his
point, the essence of which is that Einstein’s conservation law (8.1) can be re-
expressed as the divergence of two terms: a term which itself vanishes via the field
equations (hence the vanishing of the divergence of this term is “physically mean-
ingless”), and a term whose divergence vanishes identically. Hence the taking of the
divergence does not have physical significance. Einstein replies on 24 March 1918,7

writing that he “does not concede” that either Klein’s relations or his (the relations
(8.1)) are “devoid of content.” Rather, he says, “What they contain is a part of the
content of the field equations.”8

After this letter from Einstein the correspondence on this issue slows down, but
Klein continues to work on it with the assistance of Noether. In 1918 Noether and
Klein each publish papers that together contain three theorems, the result of work that
they had been doing together.9 On 15 July, Klein writes to Einstein with the reasoning
found in his 1918 paper that in essence leads to the Boundary theorem (see below).
Further details and discussion of the Klein–Einstein correspondence during this period
leading to the Noether and Klein papers, and of the crucial role played by Noether,
can be found in (Rowe 1999, see especially pp. 212–28). The content of these papers
enables us to resolve both aspects of the story mentioned above, but first let us mention
the historical background to the second aspect.

In his reply to Klein, Hilbert (Klein 1917, 477–482) agrees with Klein,10 and goes
further, postulating that conservation of energy holding “identically” is characteristic
of any generally covariant theory. He writes:11

“With your considerations on the energy theorem I am in full factual agreement:
with Emmy Noether, whose help I called upon for clarification of questions pertain-
ing to the analytical treatment of my energy theorem more than a year ago, I found
accordingly that the energy components set up by me, just as those of Einstein, can be



8 General Relativity, Energy Conservation, and Noether’s Theorems 127

formally transformed by means of the Lagrangian differential equations . . . of my first
contribution, into expressions whose divergence identically, that is without reference
to the Lagrangian equations [ . . . ] vanishes.

“Since on the other hand the energy equations of classical mechanics, of the the-
ory of elasticity, and of electrodynamics, are fulfilled only as a consequence of the
Lagrangian differential equations of these problems, then it is justified if you accord-
ingly do not recognise in my energy equations the analogues of those of your theory.
Certainly I maintain that for general relativity, that is, in the case of general invariance
of the Hamiltonian function, [such] energy equations . . . in general do not exist . . .
I might designate this circumstance as a characteristic trait of the general theory of
relativity. For my assertion, mathematical proof should be adduced.”

Once again, Einstein is in disagreement with Hilbert and Klein. In his letter to
Klein of 13 March 1918, Einstein insists that

“The relations here are exactly analogous to those for nonrelativistic theories.”
As we shall see below, Noether’s 1918 paper is explicitly concerned with giving

the mathematical proof that Hilbert sought for his claim.

8.2 Discussion12

We now turn our attention to how to resolve these two related disagreements be-
tween Einstein, Hilbert and Klein, using results based on the 1918 papers of Klein and
Noether entitled “On the differential laws for conservation of momentum and energy
in Einstein’s theory of gravitation” and “Invariant variation problems,” respectively.

Klein’s paper is concerned with results that follow for generally covariant theo-
ries, and in particular General Relativity.13 The diffeomorphism freedom of General
Relativity is a local symmetry in the sense that the symmetry depends on arbitrary
functions of space and time. In its generalised form (i.e., applying to all Lagrangian
theories that have a local symmetry), we call the theorem contained in Klein’s paper
the “Boundary theorem” for reasons to do with how it is derived (see Brading and
Brown, 2003b). We can state this theorem as follows.

8.2.1 Boundary Theorem

If a continuous group of transformations depending smoothly on ρ arbitrary functions
of time and space pk(x)(k = 1, 2, . . . , ρ) and their first derivatives is a Noether
symmetry14 group of the Euler–Lagrange equations associated with L(ϕi , ∂μϕi , xμ),
then the following three sets of ρ relations are satisfied, one for every parameter on
which the symmetry group depends:

∑
i

∂μ

{(
∂L

∂ϕi
− ∂ν ∂L

∂(∂νϕi )

)
bμki

}
= ∂μ jμk(Noether) (8.4)
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∑
i

(
∂L

∂ϕi
− ∂ν ∂L

∂(∂νϕi )

)
bμki = jμk(Noether) −

∑
i

{
∂ν

(
∂L

∂(∂νϕi )
bμki − ∂(��μ)

∂(∂ν�pk)

)}
,

(8.5)

∑
i

{(
∂L

∂((∂μϕi )
bνki − ∂(��ν)

∂(∂μ�pk)

)
−
(

∂L

∂(∂νϕi )
bμki − ∂(��μ)

∂(∂ν�pk)

)}
= 0 (8.6)

where the infinitesimal transformation δ0ϕi is given by

δ0ϕi =
∑

k

{
aki (ϕi , ∂μϕi , x)�pk(x)+ bνki (ϕi , ∂uϕi , x)∂ν�pk(x)

}
, (8.7)

�pk indicating that we are considering infinitesimal transformations, the aki and bμki
depending on the particular transformation in question, and jμk(Noether) is the “Noether

current”15 associated with the kth arbitrary function:

jμk(Noether) := −
∑

i

{
∂L

∂(∂μϕi )

∂(δ0ϕi )

∂(�pk)
+ L

∂(δxμ)

∂(�pk)
− ∂(��μ)

∂(�pk)

}
. (8.8)

The terms in�μ occur when the action associated with the Lagrangian L is not strictly
invariant under the transformations being considered, instead picking up a divergence
term. This is the case for the so-called Einstein �� action, for example.16 The above
three identities (8.4)–(8.6), along with that of Noether’s second theorem (see below),
are not independent of one another, but we present all four here since that is how they
emerged historically.

Rearranging the first identity of the Boundary theorem, equation (8.4), we get:

∂μ

{
jμk(Noether) −

(
∂L

∂ϕi
− ∂ν ∂L

∂(∂νϕi )

)
bμki

}
= 0. (8.9)

Hence, defining

�
μ
k := jμk(Noether) −

(
∂L

∂ϕi
− ∂ν ∂L

∂(∂νϕi )

)
bμki , (8.10)

we have that

∂μ�
μ
k = 0 (8.11)

holds identically. From this, we infer the existence of the so-called “superpotentials”
Uμν

k , such that

�
μ
k = ∂νU

μν
k , (8.12)

where

∂μ∂νU
μν
k = 0 (8.13)
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holds identically. These mathematical manipulations allow us to re-write the Noether
current in the following form:

jμk(Noether) =
(
∂L

∂ϕi
− ∂ν ∂L

∂(∂νϕi )

)
bμki + ∂νUμν

k . (8.14)

In other words, the Noether current can be expressed as consisting of a term which
vanishes when the field equations are satisfied,

∂L

∂ϕi
− ∂μ ∂L

∂(∂μϕi )
= 0, (8.15)

and a term whose divergence vanishes identically.
Now consider the conservation law17

∂μ jμk(Noether) = 0. (8.16)

Given that the Noether current can be re-written in the form (8.14), we see that (8.16)
can be understood as the vanishing of the divergence of two contributions. The first
contribution vanishes when the field equations are satisfied without any need to take
the divergence; the divergence of the second contribution vanishes identically. We can
therefore re-express Klein’s concern over the status of Einstein’s conservation law as a
more general point about conservation laws for Noether currents associated with local
symmetries (i.e., where the k subscript relates to an arbitrary function of space and
time pk). The Kleinian claim is that because we can re-write the Noether current in
the above form, the taking of the divergence does not lead to a physically significant
result; the conservation law (8.16) therefore lacks physical significance.

At least a part of Einstein’s response seems to be that (8.16) holds only when the
field equations are satisfied, and that we are therefore making use of physically sig-
nificant information in order to move from (8.14) to (8.16). This is true, but it doesn’t
address the full weight of the problem: the term of the Noether current involving the
Euler–Lagrange equations vanishes on-shell without any need to take the divergence
of the Noether current. Taking the divergence plays a role only with respect to the sec-
ond term, and there the divergence vanishes identically. We are back to the question:
wherein lies the physical content in taking the divergence of the Noether current and
finding that the resulting expression vanishes?

I think that the right thing to say at this point is as follows. We have shown that
whenever we have a local symmetry, the associated Noether current can be re-written
in the form (8.14) such that when the field equations are satisfied

jμk(Noether) = ∂νU
μν
k . (8.17)

Part of the Kleinian worry is that the associated continuity equation for jμk(Noether) lacks
physical content because of (8.13). But notice: while it is true that we can always
write an expression of the form (8.17) when the field equations are satisfied, there
remains the question of whether, and if so when, this equation expresses a physically
significant relation. So far in doing the re-writing all we have done is mathematics, and
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only mathematics. The relation (8.17) gains physical significance only when it holds
“not as an identity or definition, but as a field equation postulated to relate two separate
systems” (Deser 1972, p. 1082). Consider, for example, the Maxwell field equations

Jμ = ∂νFμν. (8.18)

These equations are of the form (8.17), and

∂μ∂νFμν = 0 (8.19)

holds simply in virtue of the antisymmetry of Fμν . Nevertheless, we do not say that
conservation of electric charge is a mathematical identity without physical signifi-
cance. This is because the equations (8.18) are not a mere mathematical re-expression
of the current Jμ; they express a physically significant relation between two different
types of field: on the left-hand side we have a current, Jμ, depending on the matter
fields carrying the electric charge, and on the right-hand side we have an expression
depending on the electromagnetic fields, Fμν . Thus, the current conservation law fol-
lows via (8.18) and (8.19), and since (8.18) is physically significant so is the current
conservation law.

Similarly in the case of General Relativity, the re-expression of energy-momentum
through a relation of the form (8.17) has physical content because it gives a relation
between the behaviour of the metric and the matter fields, it is a field equation with
physical content, and hence the conservation law that follows from it (via an identity
for the right-hand side) also has physical content.

This is, I believe, how we should understand the first aspect of the story, con-
cerning the claim that energy conservation is an identity. Turning now to the second
aspect, the contrast with other theories alleged by Hilbert and disputed by Einstein,
we need to look at Noether’s paper (Noether 1918). In that paper Noether proved two
theorems, the first holding with respect to the global symmetries of a theory, and the
second holding with respect to local symmetries. We may state these two theorems as
follows.18

Noether’s First Theorem

If a continuous group of transformations depending smoothly on ρ constant param-
eters ωk (k = 1, 2, . . . , ρ) is a Noether symmetry group of the Euler–Lagrange
equations associated with L(ϕi , ∂μϕi , xμ), then the following ρ relations are satisfied,
one for every parameter on which the symmetry group depends:

∑
i

(
∂L

∂ϕi
− ∂μ ∂L

∂(∂μϕi )

)
∂(δ0ϕi )

∂(�ωk)
= ∂μ jμk(Noether), (8.20)

where �ωk indicates that we are taking infinitesimal symmetry transformations,

δ0ϕi = ∂(δ0ϕi )

∂(�ωk)
�ωk, (8.21)
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and where jμk(Noether) is the Noether current (8.8), the arbitrary functions pk replaced
by the arbitrary parameters ωk .

Noether’s first theorem is widely known for the general connection it makes be-
tween symmetries and conservation laws. When the left-hand side of (8.20) vanishes
(for example via the field equations, but see Brown and Brading (2002), for a more
detailed discussion) we arrive at a conservation law (8.16). This was not the main pur-
pose of her paper, however. Rather, Noether was providing the proof that Hilbert has
asked for concerning his conjecture, and for that we need also her second theorem.

Noether’s Second Theorem

If a continuous group of transformations depending smoothly on ρ arbitrary functions
of time and space pk(x) (k = 1, 2, . . . , ρ) and their first derivatives is a Noether
symmetry group of the Euler–Lagrange equations associated with L(ϕi , ∂μϕi , xμ),
then the following ρ relations are satisfied, one for every parameter on which the
symmetry group depends:

∑
i

(
∂L

∂ϕi
− ∂μ ∂L

∂(∂μϕi )

)
aki =

∑
i

∂ν

{
bνki

(
∂L

∂ϕi
− ∂μ ∂L

∂(∂μϕi )

)}
(8.22)

where the infinitesimal transformation δ0ϕi is given by (8.7), above.
As we saw in Section 8.1 above, Hilbert’s conjecture was that the difference be-

tween generally covariant theories such as General Relativity, and earlier theories such
as classical mechanics, can be characterised by the differing status of energy conser-
vation: in generally covariant theories the energy conservation law can be re-written,
using the Euler–Lagrange equations, such that it holds “identically.” The final section
of Noether’s paper concerns this “Hilbertian assertion” quoted above (see section 1).
She writes:19

From the foregoing we finally obtain the proof of a Hilbertian assertion
concerning the connection between the lack of proper energy theorems and
“general relativity,” and this even in a generalized group-theoretic version.

Where Hilbert uses the term “identically,” we shall mean that the current conser-
vation law can be re-written in the form (8.14), this being what we concluded above
based on the clarifications made by Klein. The proof then proceeds as follows. In the-
ories that do not admit a local symmetry group, only Noether’s first theorem (and not
her second) can be obtained. In such theories, we apply Noether’s first theorem to a
global symmetry and obtain a corresponding relation of the form (8.20) from which we
may proceed to a current conservation law.20 However, in theories that admit a local
symmetry group we can do two things: the first theorem can be applied to the global
subgroup, from which we may proceed to conservation laws, and since the second the-
orem also applies we can combine it with the first theorem to arrive at what Earman
has called “Noether’s third theorem.”21 We equate the left-hand sides of the equations
of the first and second theorem—and the consequence is just the first identity of the
Boundary theorem (8.4). In other words, only when the global symmetry group is a
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subgroup of a local symmetry group can we re-write the Noether current in the form
discussed by Klein, i.e., in the form (8.14). In classical mechanics (for example), the
global space and time symmetry group is not a subgroup of a local symmetry group,
so the energy conservation law (associated with global time translations) cannot be
re-written in the form (8.14). The form (8.14) is indeed characteristic of generally
covariant theories, or indeed of any theory with a local symmetry structure. In this
way, Noether proved Hilbert’s conjecture, and generalised it beyond the case of gen-
eral covariance and energy conservation to all continuous global and local symmetry
groups.22

8.3 Conclusions

The subject of this note has been a small historical thread in the long and complex
story of the status of energy conservation in General Relativity, concerning two related
claims made by Klein and Hilbert: that the energy conservation law is an identity in
generally covariant theories, and that this marks a contrast with other (earlier) theories.
Both these claims were disputed by Einstein. We have seen how three theorems proved
by Noether and Klein can be brought to bear on this disagreement, showing that:

(1) Klein’s worry over the physical significance of the energy conservation law in
General Relativity was perhaps not adequately addressed by Einstein, even though in
the end we side with Einstein against Klein, and

(2) the possibility of re-writing the energy conservation law in the form that so worried
Klein does indeed depend upon the local symmetry structure of General Relativity.
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Notes

1For the variational problem and derivations of the theorems, see Brading and
Brown (2003a) and (2003b).

2Klein (1918) p. 475.
3On Hilbert’s first note on the foundations of physics, see Sauer (1999).
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4See Rowe (1999), pp. 210–213.
5Einstein (1998), document 480, pp. 494–5 of the English translation. Equation

numbers are ours; in Einstein’s letter the numbers are (22), (23) and (24) and refer to
the equations appearing in Klein’s note.

6Einstein (1998), document 487, pp. 503–507 of the English translation.
7Einstein (1998), document 492, pp. 512–514 of the English translation.
8Einstein then goes on to give reasons in favour of his own version of the di-

vergence relations rather than Klein’s, but the difference between the two does not
concern us here.

9Noether’s paper was originally submitted to the Göttingen Society by Klein in
January 1918. She continued to work on it, presenting it to the Society in July and
finishing the paper by the end of September (see Rowe, 1999, p. 221).

10The friendly tone of this exchange masks the deep criticisms that Klein was mak-
ing of Hilbert’s work (see Rowe, 1999, p. 212).

11Hilbert’s answer to Klein (1917), p. 477. Thanks to Tilman Sauer and to Tom
Ryckman for translating this passage.

12The following discussion is reproduced in its essentials in Brading and Brown
(2003a).

13Section 7 of Klein (1918) is about the relationship between Einstein’s formulation
of the conservation theorems and Klein’s derivations.

14A “Noether symmetry” is a symmetry of the field equations that satisfies the re-
quirement that the change in the action arising from an infinitesimal symmetry trans-
formation is at most a surface term. See Brading and Brown (2003b).

15See Noether’s first theorem, below.
16For further details and explanation, and for the derivation of the Boundary theo-

rem, see Brading and Brown (2003b), where references to related results can also be
found.

17More precisely, this is a continuity equation, and in physics (as opposed to math-
ematics) the term ‘conservation law’ is often reserved for expressions of the form
d
dt Q = 0, where Q is here a conserved charge, these being obtained from continuity
equations subject to certain conditions (see Brading and Brown, 2003b).

18For the derivations see Barbashov and Nesterenko (1983); Brading and Brown
(2003b), and Trautman (1962).

19Noether 1918, p. 253–4, p. 201 of the English translation (Tavel) but amended
translation (my thanks to Bjoern Sundt and Tom Ryckman).

20Note that there is no guarantee that the result is interesting—see Brading and
Brown (2003b).

21See Earman (2003).
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22Picking up on Hilbert’s use of the term “proper” for the energy conservation laws
in non-generally covariant theories, Noether terms such relations “improper.” The ori-
gins and significance of this terminology in Hilbert’s work is the subject of ongoing
joint work with Tom Ryckman.


