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GENERAL COVARIANCE FROM THE PERSPECTIVE OF
NOETHER’S THEOREMS

HARVEY R. BROWN¥ AND KATHERINE A. BRADING*

Most arguments about the formmiation and content of
gemeral dovariance are mert shadow boxcing. Since all wable
thesries must be gemerally covariant, the omly question of
intersst is their relative simplclty and the nuts and bos of
their omsirucHion.

J. BARBOUR (2001)

1. Introduction

Questions concerning the meaning of the punciple of gencral
covatiance and, perbaps to a lesser extent, its precise historical role in
the development of Einstein’s general theory of relatvity (GR), never
quite seem to go away.’ General covariance is a bit like the principle of
equivalence: much cited, often misunderstood, and a noble, if
treacherous, soutce of occupation for the philosopher of physics. After
all in the process of developing GR, Einstein himself got seriously
confused about it in 2 aumber of ways, and his mature writings never laid
the matter to rest. Our own ideas on the topic were largely the by-
product of immersion in the 1918 theorems of Emmy Noether, whose
work was iospired by the attempt amongst the Gottingen
mathematicians to understand the technical role of general covariance in
the vasiational approach to GR. The results of Noether’s work provide
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20 illuminating method for testing the consequences of what we shall
refer to as “coordinate generality” and for exploring what else must be
added to this requirement m order to give the general covadance of GR
its far-reaching physical significance. The discussion takes us through
Noether’s first and second theorems, and then a third related theorem
duc to F. Klein (which we call the Boundary theorem). Along the way
contact wil be made with the contributions of, principally, J. L
Anderson, A. Trautman, P. A. M. Dirac and R. Torretty, not to mention
the father of the whole business, A. Einstein.

II. Preliminary considerations.

Let us start with the familiar electromagnetic action in a spacetime
with the (possibly curved) metric tensor field g* which has Lorentzian
signature and whose determinant is denoted by g

Sen = JﬁLa d'x =—%L}g"°ng,,F,dJ—_g.d‘x, (1)

where ~E, =A, ,~A, and Q is an arbitrary compact region of
spacetime. (We are adopting the Einstein summation coavention for

Greek indices throughout) If, as is well-known, we apply Hamilton’s
principle with respect to variations in the 4-potential A, then we obtain

the covariant form of Maxwell’s equations in the source-free case:

F¥%=0. (2)

Now suppose we choose similarly to apply Hamilton’s principle with
respect to variations in g, treating (just for the sake of argument) S,
as the total action. Then we immediately obtain

T,=0 (3)

where as usual in this context the stress-energy tensor T, is defined in
terms of the relevant vanational derivative of the lagrangian density Lg,:

o2 g
Tw.—j-ag 52" . (4)

The result (3) is pretty disastrous: it means that F, =0. If we want the
metric teasor to be a boma [fide dynamical player, we need to add
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another term to the action which is a functional of at least the g and
their degivatives, but not of the A and their derivatives—which is of
course what is done in GR. But note that the electromagnetic  field
variables do not require an anzlogous second contribution to the action,
independent of g°. Indeed, gencral covariance goes some Wiy to ruling
out such a possibility, as we sec in section V.

Recall now that the Lagrangian in Sgy is a scalar deasity, so Sg 13
strictly invariant undes general (infinitesimal) coordinate transformations

&P =2 el (5)

where E* is an arbitrary vector field, and € taken to be small This
condition is sufficient, but not necessary, for the general covariance of
the Euler-Lagrange equations (2) and (3), 2s we scc below. Now 2
subgroup of this group of arbitrary coordinate transformatons is that
associated with rigid spacetime translations for which the & in (5) are
aow independent of the coordinates. It follows that clements of this
‘rigid’ subgroup are also ‘Noecther symmetries’, and are specifically of
the kind that figure in Noether's fiest (and more celebrated) theorem
that leads to a conacction between symmetries  and conservation
principles.?

The theotem, in a generalised form, is this. Suppose that the first
order vadation in the action § vanishes (up to 2 surface term, of which
more below) under a given group of infinitesimal transformations of the
dependent or independent variables that depend on a number of
atbitzary constant parametess. Then for each such parameter there is 2
linear combination of the Ewler expressions associated with each of the
dependent  varables (fields) that i equal o the divergence of the
associated Noether current’. (Recall that the “Fuler expression” is the
variational derivative of the lagrangian density with respect to the chosen
field variable; when it vanishes, as 2 tesult of applying Hamilton’s
principle to that field, the Euler-Lagrange equations are said to hold for
the field. The Noether current is 2 quantity which depends on, infer alia,
the way the lagrangian density in turn depends on the derivatives of all
the field vargables) If the mentioned lincar combination of Euler

2 The English transhtion of Noother's celebrated paper (Noether 1918) is found 1n
Tavel (1971). Good accounts of the first theorem ace found i, for example, Hill
{1951), Trautman {1962) and Doughty (1990).
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expressions bhappens to vanish, 2 continuity equation is obtained of the
form:

A it=0 (©)

where the index £ in the cument picks out one of the constant
patameters involved in the symmetry transformation. From (6) a time-
independent Noether ‘charge’ can finally be constructed by integration
of ji over a 3-dimeasional spatial region with suitable bouadary
conditions.

Let’s apply Noether's first theozem to the electromagnetic action (1),
using the invarance under rigid spacetime translations. If we assume that
the Euler expressions associated with varations in the A, vanish, re. if we
assume Maxwell’s equations (2) hold, then the Noether condition reduces
to:

Tpvgu'ﬂﬁ =—za|u'g > (7)

where T, is defined asin (4) and ¥ is the Noether curreat associated
with Sy, . This curreat, it turns out, takes the form

-’: " %& Avo -&;LEM
dA,,
I (8)
=8| P Ay, - JREFY )
and the form of T, can be obtained disectly from (1) and (4):
1
T, ==F F? + 4—ng°’1’°’. (9)

Now using again the field equations (2) it can be shown from (8) and
(9) that

=Tt = 243, (f~gP=4,). (10)

We thus sec that the Nocther current P equals J—_gff up to a
divetrgence term. Bar we sl have mot obtained a comservation
primeiple, because the left hand side of Nocther's equation (7) does not
vanish. This is also seen by using (10) together with (7), obtaining
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1!, =0. (11)

The failute of this formulation to correspond  to a true conservation
principle resides in the fact that it is the covariant, not the ordinary
derivative that appears in the equation. Onc way 10 get rid of this
impediment is to go to the special case of the flat Minkowski metric
g¥=1", n which there arc global (inertial) coordinates such that
", =0, or equivalently, such that partial and covariant derivatives
coincide. The Noether condition (7) now reduces in these coordinate
systems to the desired form

Au=T0, =0. (12)

What does this example illustrate? Firss, that it is not enough that
certain ‘global’ transformations of the dependent and/or independent
varizbles are Nocther symmetrics—i.c. Ones under which the action is
invariant up to a sucface term—for there to be a conservation principle,
of even a continuity equation. (An analogous situation holds for the local’
symmetries like general covariance that feature in Noether’s second
theorem, as we shall sce) What more i needed? Trautman’ long ago
recognised the importance of this question and emphasised that unless
alf the Euler expressions vanish on the LHS of the Noether condition—a2
necessary but not sufficient condition for all the associated fields to be
dynamical'— 2 conservation principle need not ensue. But he also
emphasised the relevance of the possible existence of “motions”
(isometies) in the spacetime in cases like ours where the metdc field 1s
non-dynamical. Recall that in the above example, the comservation
principle holds perfectly well, and is only imferesting, when the Euler
expression  associated with g"'——which is essentially T, —does mof
vanish. What sccures the conservation principle, besides the wvanishing
of the remaining Fuler expression associated with A, is the condition

that " is an abso/xte background geometsy of 2 special kind: i is flas.
(Actually, conservation laws ecxist more generally whenever the
spacetime has constant curvature.)

Secondly, it is the flatness of the background geometry that permits
the Nocther symmetries, which involve certain, special transformations

3 See Teautman (1962), sections 5-2 and especially 5-3.
4 An apparent example of 2 non-dynamical field that is aonctheless  subject [0
Hamilton's princple is found in Sorkin (2001).
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between global coordinate systems, to have an active interpretation. It is
not enough for the symmetries themselves to be ‘global’ in the osber
sense that they do not depend on the coordinates. We return to this
poiat in section VIIL

Thirdly, the example exhibits a connection between the Nocther
current and the variationally-defined stress-encrgy tensor (4). This
connection Is a consequence of a generic structural feature of generally
covarant theories of matter, which is captured in a Nocther-type
theorem that was first demonstrated by Felix Klein in 1918. Discussion of
this issue will be found in section VI.

Fourthly and finally, let us not forget the 1917 lesson of E
Kretschmann® which in this context is that the omginal Maxwell theory
in Minkowski spacetime is no different from amy theory in being
susceptible to 2 generally covariant formulation. It is a commonplace
that at the level of the field equations, the price of the move to general
covariance in Minkowski spacetime is the explicit appearance of
previously implicit geomettic structure (in  particular the affine
connection coefficients) in (2):

F¥y = P + T8 F™ 4 T2 F* =0, (13)

But implementiag 2 generally covariant formulation of the theory adds
nothing new to its empisical content. As Ohanian and Ruffini write 6 “We
will obey this commandment [general covariance] for the best of all
feasons—it costs us nothing to do so.” And yet the fact that there is no
cost 1s itself non-trivial. For, as we shall see in section IV, the move to
general covariance tmmediately ratses  the  spectre of
underdetermination. It might seem odd that 2 mere reformulation of a
well-behaved dynamical theory, such as Maxwell theory in Minkowski
spacetime, should complicate the issue as to whether 1t has a well-
defined imitial value problem. Indeed, realisation that the complication in
this case must be a mere artifact of the new generalised preseatation, ie.
that it mxsf be innocuous, forces one to make a crucial decision. One
must accept cither that a privileged class of global coordinate systems-—
the inertial systems— is required in the process of prediction, or one

* An excellent, detailed analysis of Kretschmano’s famous paper (Kretschmann 1917)
i5 found in Rynasiewicz (1999); see also Nortoa (1993) in this connection.
§ See Ohanian and Ruffini (1994), p. 373.
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must embrace the ‘Leibniz equivalence’ of diffeomorphically related
versions of the world.

As for the first option, the inertial coordinate systems cleady are
privileged in Minkowski spacetime, but the question is whether they are
essential for the purposes of prediction in Maxwell theory. If they are,
there is hardly any point to imposing general covarance. But it seems at
any rate more natural to adopt the second option. One amongst several
possible reasons for this is that an analogous  threat of
underdetermination in the formulation of electromagactism involving
the 4-potential A —which arises because the equations are covariant
under local gauge transformations of the A,—is removed once it s
realised that the empirical content of the theory is gauge-independent.
(In section VI we will see a connection of sorts between the existence of
gauge invariance of this sort and the requirement of general covariance
for equations for vector matter fields) Einstein’s struggle from 1913 to
1914 with the implications of the “hole argument” in GR leads one to
surmise that until that pesiod he had not properly considered either the
question as to whether special relativity bas 2 generally  covariant
formulation, or the significance of the gauge structure of Maxwell
theory®

I1I. General covariance vs. coordinate generality.

We saw in the previous section that the iavadant action (1} must be
supplemented with 2 further term if g is to play 2 valid dynamical role
in the theory. Suppose we require that the ensuing equations of motion,
both for 2 and 4,, are generally covarant. What kind of restzuction on
the action is this?

A bref look at the eardy history of the action principle in GR is
enlightening in this fespect. In 1915 D. Hilbert had proposed a pure

? Recent discussions of the bole argument can be found in, eg. Norton (1993),
Rynasiewicz {1999), and Saunders (2001).

8 It was Einstein's belated insight that different spacetime structures related by
diffeomorphisms are nothing other than different representations of the same reahity
that solved the undestermination problem in GR Now, diffeomorphisms end up
having 4 much more interesting creafive role within the “best-matching”™ (Machian)
approach 1o gravitatiopal dynamics defended by Barbour. Here, they are essential in
the process of companng, BOL WO representations of a given geometry, but two
distinct geometdies 1 order to capture what their intrinsic difference i Furthes
details can be found in Barbour (2001) and the works cited thezein.
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gravitational action whose lagrangian density is the scalar curvature
denstty RJ—-g-. This action is cleardy invadant under arbitrary
diffeomorphisms. But in 1915 and 1916, Einstein proposed two versions
of what is sometimes called the “T-I™ action. The first contained 2
lagrangian density of the form g"TSTY, | and was defined only in relation

to special coordinate systems for which -J—_g=l. (It is remarkable that
despite his commitment to general covariance, for a period in 1915 and
1916 Einstein thought that restriction to such special coordinates would
lead to 2 significant simplication of gravitational physics. We return to
this issue in section VIL.) The second version of the action contained the

lagrangian deasity g™ (f;m—ffvl';),}— , defined now for an arbitrary
coordinate system (and reducing to the first version for the mentioned

special coordinates, since when a,(\/-_g)=0 then T} =0) What is

interesting for our purposes is that the latter version of the I'-I" acton is
cleardly not invamant with respect to arbitrary coordinate trans-
formations, although it leads to the same generally covamant field
equations for g" as Hilbert’s.

The fact that it is sufficient bws mof mecessary that the first-order
vadation in the total acton S stricty vanish under arbitrary infinitesimal
diffeomorphisms in order for the Euler-Lagrange cquations to be
generally covatiant is today no secret, but its acknowledgement in
modern texts on GR is not guaranteed.' To see what is going on
technically, recall that Hilbert's invamant action has 2 curious property.
Despite being of second order (ic. dependent on first 2nd second
derivatives of 2") it somehow gives nse to only second-order, rather
than fourth-order, Euler-Lagrange field equations. The Einsten T-T
action, which is first-order, demonstrates how this magic occurs.
Subtracting Einstein’s lagrangian density from Hilberts, one is left with a
term that takes the form of a total divergence of a first-order functional
of g This term contains 4/ the second-order quantities in the Hilbert
action. But it is known from the calculus of vanations that to any

? The abbreviated form of the action appeared in Einstein (1915, 1916a), and the full
form 1o a footnote in Einstein (1916b). Note that Einstein's connecuion coefficients
were the negative of the usual Chastoffe! symbal.

10 [n Misner, Thome and Wheeler (1973), p- 503, for instance, one reads thart “... the
action integral ... 15 2 scalar invamant, a number, the value of which depends on the
physics but pot at all on the system of coordinates in which thar physics is
cxpressed”,
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Lagrangian density can be added a total divergence without affecting the
Euler-Lagrange equations. So the Hilbert and Einstein actions are

effectively the same—as Einstein fully appreciated. (Actions of the I'T
kind, which are invadant under general coordinate transformations up to
a surface term, are sometimes said to be “quasi-invasiant”, or, perhaps
regrettably, “covadant”. Interesting quasi-invariznt actions atise not just
in GR of course; the standard action of the free Newtonian particle 1s
quasi-iavagant telative to Galilean boosts. Itis noteworthy that Noether
herself did not take into account such cases in her general treatment of
the variational problem.)

Now in Lovelock (1969) we find the following result. In a spacetime
of four or less dimensions, 2ay strctly invariaat, second-order
gravitational action that gives mse to second-order field equations must
be associated with z lagrangian deasity which is 2 linear combination of
the Hilbert lagrangian deasity and a cosmological term:

L L(aR g+ b\ﬂg)d‘x (14)

where Ris the curvature scalar. (Note that |g| appears rather than the
usual -g, because Lovelock made no assumptions about the signature of
&) A strengthened version of this result was reported in Grigore
(1992), concerning the class of firss-order, guasi-invariani gravitational
actions. Grgore’s result, the proof of which is especially complicated,
states that independently of the dimensionality of spacetime, the
lagtangian density appearing in this action must tzke the form of a linear
combination of the 1916 Einstein I-T lagrangian deasity'! and 2
cosmological term:

s Lol a9

The Lovelock-Grigore theotems are evidently highly non-travial and
they share the premiss that the Euler-Lagrange equations must be
generally covarant. But it s worth emphasising that the mere
requirement that diffeomorphisms are Noether symmetries s far too
weak to engender anything like these results. ladeed we have seen that
both results explicitly require in addition that the Euler-Lagrange

'l Grigore does not mention Einsteins 1916 lagmangian density, but his expression is
equivalent to It
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equations are no higber than second-order. We recall, however, that the
generally covaniant Brans-Dicke (1961) theory of gravitation also contains
second order equations in g", but its second-order gravirational action is
not Hilbert's. Consider, in the same spirit, the following two firsf-order
actions:

=Igwgwgnw m\ﬂd‘x’
—I&.,.(I‘J; m)e* 8"( )\’l;ld x

where B, is some vector field, T}, 15 the usuval metric-compatible

(16)

connection (Christoffel symbol), and T% is some distinct connection.
These actions too are invariant under diffeomorphisms, so they might
appear at first sight to satisfy the Grigore conditions, even though each is
quite different from the Einstein 1916 action. Of course the reason that
these three cases circumvent the Lovelock-Grigore results is that each
introduces 2 geometric object field over and above g (in the Brans-
Dicke case a scalar ficld). Both Loselock and Grigore are assuming that
the gravitational lagramgian demsity is comstructed out of the g field
and 115 derivatives, alome. This assumption is, like the previous one
regarding the second-order natuce of the field ecquations, quite
independent of the requirement that the Euler-Lagrange field equations
be generally covamaat.

That the gravitational interaction in GR should be associated with the
existence of a metric field with Lorentzian signature finds its mouvation
in all those empincal results that are related to the equivalence principle,
as long as the trajectories of freely falling test particles are taken to
correspond to tme-like geodesics.'? The strong version of the principle
presupposes that me more than the metdc field is needed to account for
the gravitauonal potential. In particular, there is no need to introduce
any geometrical objects into the gravitational action that are abroluie, in
the sense of not being subject to Hamilton’s vamational principle (Le. 1n

12 Por a particularly good discussion of the strong equivalence pnnciple, sce Ehlers
{1973). Note that the Brans-Dicke theory, which postulates a scalar ficld s well as &
satisfies the “medium-strong” or “semistzrong” version of the equivalence priaciple.
For 2 discussion of this distinction, see Riadler (1977), secuon 1.20. It should be
stressed that in all these versions of the principle, it is being assumed that the
geodesic deviation associated with nidal gravitational effects are curvatusre-rclated. Ia
the so-called teleparallel approach to GR, it is not affine curvature that gives sise to
geodesic deviation but torsion; for a bref review see Blagojevie (2002), pp. 68-72,
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the sense of acting but not being acted upon). The significance of this
point will be discussed in secton VII below. In the meantime, the point
we wish to reiterate—the point that Anderson (1964, 1966, 1967) and
Trautman (1966) weat to pains to emphasise— is that general covariance,
puay though it is as a coastraint on the equations of motion per se, leads
to highly non-trivial conditions when combined with further demands.
The demand we sre interested in here is comsistency with the strong
cquivalence principle—or at any rate with the principle that nothing
other than the dynamical g" field is necessary in order to account for
gravity. (This last principle has itself occasionally been referred to in the
mainstream literature, for better or for worse, as “the principle of
gencral covadance™.!® In order to avoid any confusion, we shall
sometimes use the term “coordinate generality” when we particularly
wish to emphasise that we mean general covariance in the weak,
Kretschmana sense.)™

IV. Noether’s second theorem

Io the book based on his 1970s Flodda lectures on GRP P. AL M
Dirac emphasised 2 particular feature of the coupling of gravity with
matter fields: that the Eules-Lagrange equations, obtained by wvarying the
total action with respect to each of the distinct dynamical fields and
using Hamilton’s stationanly principle, are not all independent of one
another. Dirac considered the specific case of a continuous distribution
of charged matter, interacting with the electromagnetic field, with both
‘fields’ coupled to gravity. He showed that the equations of motion of the
clements of matter (incorporating the Lozentz force law) are not only
derivable directly by varying the given action with respect to the
appropriatc matter variables. They are also 2 comsequence of the
Einstein field equations (obtained of course by varying with respect
to g") together with the covanant form of Maxwell’s equations (obtained
by varying with respect to the electzomagaetic four-potential ). Dizac
cealised that this imserdependence of the equatons of motion 1s a
consequence of the fact that arbitrary diffeomorphisms are dynamical

13 See Wald (1984), p. 57.
14 Coordinate generality as we have defined it corresponds to what Saunders (2001)
refers to as "diffeomorphism covariance®.

1% Dirac (1996), section 29.
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symmetries. (By “interdependence” we mean that not all the eguations
of motion are independent)

Dirac did not mention it, but the issue he was highlighting dates back
to the investigations, betweea 1915 and 1918, involving David Hilbert,
Felix Klein, Hetmann Weyl and Emmy Noether, conceraning the role of
coordinate generality in the varational approach to geometric theories
of gravitation of the sort suggested by Eiastein!s It was Hilbert in 1915
who apparently first realised that the interdependence of the Euler-
Lagrange equations was a consequence of general covariance—even in
the absence of matter fields—, and Noether in 1918 who succeeded in
treating this and related issues with rngour and (almost) complete
generality. It is interesting that these considerations represent the
flipside of the wnderdetermination problem that had caused Einstein
such headaches before he arrived in late 1915 at the final triumphant
form of his gravitational ficld equations—the “hole argumeant” mentioned
carlier. In a sense they are onme and the same problem. If the Euler-
Lagrange cquations associated with the Hilbert gravitational action, say,
were all independent, then one could detezmine uniquely for a given
coordinate system (x°) the value of g"'(x°) throughout spacetime, given
the values of the g" and their first derivatives on a given spacelike
hypersurface. But consider a different coordinate system (x°) that
happens to coincide with the first one only in the vicinity of the ‘initial
value’ hypersurface. Then because of the general covatiance of the
matter-free  field equations, at an arbitrary point far from the
hypersurface, g"'(x"°) must be the same function of the varables (X'7)
as 2"(x%) is of (x”). But this is inconsistent with the rules of tensor
transformation. Thus, the equations are not all independent, and the
predictions appear to be underdetermined.?

Nocther's second theorem-——again in a generalised version— involves
the determination of a necessary condition on the form of the lagrangian
density Lin order that the first-order vadation of the action vanish (up

16 A useful bistorical account is found in Rowe (1999), although we are not in
agreement with some of the technical analysie therein.

7 The Euler-Lagrange equations will have unigue solutions to the Cauchy ininal value
problem for an appropriate initial data hypersurface if they take the “normal form™
defined by Cauchy and Kovalevekaya, Howeves, it can easily be shown that the
condition (“identity”) associated with Noether’s second theorem rules our the
normal form holding for geaeeally covasiant cquations. A useful discussion of the
underdctermination  issue and its connection with Noethers second theorem is
fovnd in Anderson (1967), sections 4-6, 4-7. See also Brading and Browa (2001).
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to 2 possible surface term) under infinitesimal transformations of the
dependent and/or independent vatizbles which depend on arbitrary
functions of the coordinates. We are interested specifically i the
arbitrary (generally non-rigid) coordinate transformations (5). The
resulting  “Noether  identity”  demonstrates,  not surprisingly, 2
dependence between  the Euler expressions generated by these
transformations. Let us suppose that the lagrangian deasity is some
functional of the g~ field 2nd a collection of matter ficlds ¢, —not
necessarily scalar fields but presumably components of tensor fields—
and their derivatives. Then the Nocther ideatity can be shown to take
the following form:

8" nE, + 3, 0,E =2g"E,), + X, (BE), (17)

where E,, and E' are the Euler expressions associated with (induced)
varations in g* and ¢, respectively: E,, =8L{5g; E' =8L{5¢,. The
coefficients @, and B are determined by the form of the Lie drag of
the fields @' (in 2 coordinate-dependent way).

(i) Before we return to Dirac’s example, let us first briefly rehearse
the more-ot-less familiar application of Noether's second theorem to
matter-free GR. Here the lagrangian density cza be written either in the

usual Hilbert form R,f—g, or in the Einstein I'-T form. Ia both cases we
get the familiar Einstein tensor Gy, appearing in the Euler expression:

By = Gone = Ro=5 e s a9

where R, is the Ricc tessor. Then, using the fact that the metric s
compatible with the connection (g’“'g. =0), we get from (17) the (twice-)
contracted Bianchi identity:

G?, =0. (19)

This identity tells us thar four of the Finstein vacuum field equations
G,, =0 are a consequence of the other six. There are two further aspects

of this result we wish to comment oo

First, the result does not depend on the form of the gravitational
action, in the sense that in the absence of matter, metrc compatibility

(g™ =0) allows us to infer from (17) that Eg, =0, as long as removing
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the matter past from the total acton does not affect its invariance
properties. The point of mentioning this is that it sheds light on 2
question posed in 1973 by Ehlers™ The question was whether a
“reasonable” alternative to the Einstein field equadons could exist which
would still take the generic form V,,(g”,8°x,8"a)=T,, but in which
Voa =0 nced not hold idemsically in g™. (It is still being taken for
granted that 77, =0 is a consequence of the matter equations of motion.)
Nocther's second theotem implies that this cannot be the case if the
purcly gravitational part of the action—for which V, s the Euler
expression—is itself quasi-invagant or invariant.

Second, (19) 1s a mathematical identity in its own mght it is a
consequence (for the metric-compatible connection) of the ordinary
Bianchi idenuty. Its validity does not depead on any properties of the
gravitational action!'™ It may be interesting here to consider the case of
the Palatini procedure of treating the connection and metrdc as
independent in the Hilbert action:

[ Redtx= [ (T +TEE, - )" ed'x. (20)

It is well-known that metrc compatibility (g"'a =0) is now a
consequence of the field equations generated by varying with respect to
the connection. In this case, Noether's second theorem does not lead to
the contracted Bianchi ideatity (19). We note that G. Svetlichny has
recently shown that the Noether identities for the Palatini procedure
take the covariant form:

R, E’ - Ep, - 8’"'»13,,.-2(15,,3"")" =0 (21)

where R}, is the Riemann tensor, E:* is the Euler expression defined
with respect to vatations of the connection [T, and E is defined as

above. We see that if the connection is not varied independently we
return to the special case of (17) in which the matter fields ¢, vanish20

18 Ehlers (1973), p. 42

12 We make this pomt m case Wald’s claim that “the contracted Baanchi identity may
be viewed as a comsequence of the invadance of the Hilbest action under
diffeomorphisms” (Wald 1984, p. 456) is rken too literally,

20 In the same work, Svetlichny has alsa shown that in deciving metdic compatibility

(g”-_g =0) pig the Palann: procedure, the usual assumption of symmetzy for the
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(i) Let us return to the condition (17). Suppose that amongst the
matter fields @, there is at least one scalar field @. Because of the nature
of the Lie drag of scalar fields, the b-coefficient associated with it in (17)
vanishes. It follows that if the Euler expressions associated with all the
remaining matter fields as well 2s &~ vanish—ie. if the equations of
motion of zll fields but @ are assumed to hold—thea (17) reduces to the
form 4, E®=0,E"=0. Since the gradient of @ is arbitrary at any
spacetime point, the only solution is E' =0, meaning that the cquation
of motion of the scalar field must also hold, if those for all the other
ficlds do.

This simple result based on general covariance is reminiscent of the
Dirac example mentioned at the beginning of this section. We should
stress however that Dirac’s continuous distribution of charged matter,
whose equation of motion involves the Lorentz force law, is not
represented by a scalar field. It is not clear to us whether Dirac’s result
can be given a similady simple undespinning with the use of the general
Noether condition (17).

v. Noecther’'s sccond theorem and the ‘response cquation’.

But Dirac himself was keen to further clarify the connection between
the interdepeadence of the equations of motion and general covariance.
To do so he proceeded, in his Florida lectures, to consider arbifrary
matter  fields constrained only by the requirement that their
conttibution to the total action is, like the (Einstein-Hilbert) gravitational
action on its own, invatant under diffeomorphisms. Dirac claimed to
show that in this case the covadant divergence of the symmetric stress-

cnergy tensor T, defined as above in terms of the variational derivative

of the matter action, vanishes. (Since this relation T}, =0 determines the
re-action of the metric ficld on its sources—the possibility of which is
secured by the non-linearity of the theory——it is sometimes called the
‘response equation”) It is on account of this relation, said Dirac, that the
gravitational field equations are not all independent of the matter field
equations.

connection (vapishing torsion) is ot sufficient in the case of two-dimensional
spacetime. Furthermoze, if torsion does exist, for spacetimes with wo or more
dimensions, the field equations for the metric field are the usuzl Einstean ones, 50
that the spacctime objects charactesising the torsion are uncoupled from the metric.
See Svethichny (2001).
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We find Dirac’s derivation of T, =0 hard to follow,” and so we will
now sketch a reconstruction of it. The result is consistent with the
standard account of “conservation” principles in GR, but it is stronger
than the usual textbook derivation of T, =0, as we shall see.

We met in the previous section the general Nocther condition (17)
on the lagrangian density which depends on both g and arbitrary
mattex fields ¢, in order for the action to be invarant (up to a possible
surface term) under arbitrary coordinate transformations leaving the
bounding surface of iategration unchanged. Rearmanging (17), we get

D34 { E'a,— (E"b;)p} = 2(1:’", g’")m + 8"k, (22)

Following Dirac, we further consider the Noether identities following
from the (quasi-) invatiance of the master part of the action. We obtain,
again after rearranging terms: :

3 {Foa(E0), = 2ANug™), + 8", (23)

where N is the Euler cxpression associated with the matter action in

respect of vadations in g". That is, N, =3L, /6g" =-(J;/2}Tu,,, where
Ly is the matter lagrangian dessity, and T, is the stress-energy tensos
(see above).

Metric compatibility (g""-,\ =0) allows us now to infer from (22) and
(23) that

({Ba-Na}e™)_=o0. (24)

So we reach the desited result
New =T =0 (25)

2 A reader of the relevant section (Dirac 1999, section 30, particulasly p. 60) might
be forgiven for thinking that the result i obuined without appeal © Hamilton’s
principle, ie. to amy equations of motion! This would make it, in the modern
parlance, a “strong” ponciple. Less importantly, but stll significandy, it i also
obtained without specifying the form of the gravitational action, although it seems to
require non-tnvial constraints on the matter fields. We leave it up to the reader to
decide whether the proof we give below is what Dirac ceally had in mind.
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only when we assume the validity of the gravitational feld equations

E,=0. The salient difference between this argument and the usual

derivation of the response equation T, =0 in GR involving the Einstein
field cquations G,, =T, and the contracted Bianchi identities G, =0,2

is that the derivation hete does mof depend om the form of the action
apart from the invariance properties (which now encompass quasi- as
well as strict invariance) of both the gravitational 2od matter-related
parts.®

So we see that the combination of (1) what we might call the doxble
inpariance condition (namely, that both the gravitational and matter
patts of the action are individually tavariant or quasi-iavariant) and (b) the
validity of the gravitational ficld equations leads to the conclusion that the
matter fields cammor be other than dymamical. (ln some cases, the
response ecquation implies, without further ado, the full equations of
motion of the matter felds. This is so for perfect fluids and hence for
dust. The somewhat more complicated situation for more general
sources has been the subject of considerable study;?' the details need
not concern us here) But this conclusion depends of course oa the
appearance of g" (and possibly its derivatives, if we ovetlook the
minimal coupling requirement) in the matter part of the action. And
again it is the requirement of invariance or quasi-invariance that makes it
at best difficult to construct this part purely out of the matter field
variables—as Anderson stressed, the fact that “there arc no free particles
in geaeral relativity” is tied up with general covatance.®

V1. General Covariance and the Boundary theorem.

We turn our atteation now to another theorem i lagrangian
dynamics whose oots go back to Noether hetself, and in particular to

22 It is remarkable that when he acrived at the field equations in 1915, Einstein was

snaware of the contracted Bianchi identity and thus viewed 77, =0 as a constraint
on the equations. See Pais (1987), p- 236. The suggestion made by Eblers (see above
and footnote 15) is then in the spirit of Einstein’s 1915 interpretation of his field
equations.

23 The derivation above of the respoase equaton is a special ase of what we
elsewhere call the Weyl stategy (Brading and Brown 2001). For a weatment of its
origins in Weyl's 1918 unified Held theory, see Brading (2002)-

M Excellent surveys of this issue are found in Ehlers (1973) and Toerets (1983),
section 5.8

25 Anderson (1967), p- 438
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the contemporary work of F Klein (1918), who was exploring the
general covarance properties of GR with Noether’s assistance. In its
generalised form we call this little-known result the Boundary theorem.2¢

Both Noether’s second theorem and the Boundaty theorem apply to
agy action imvariant up to 2 surface term uader a local transformation of
the depeadent and/or independent variables, where, to repeat, by local
transformations we mean transformations that depend on arbitrary
functions of space and time. The general solution to this varational
problem is the vanishing of 2 certain integral, where that integral
consists of two terms, a ‘bulk’ or interior term (depending on values of
the fields in the interior of the region of integration), and a boundary or
surface term. Since these functions are arbitrary, we must allow for the
possibility of their vanishing on the boundary. This means that the
mterior and surface contributions to the general solution must vanish
independently, and the vanishing of the interior coatribution leads to
Nocther’s second theorem. The Boundary theorem follows from the
vanishing of the boundary contribution, and it leads to three idemtitics.

Now let us imagine again an action that contains a pure gravitational
part (depending on g and its derivatives) and a matter part (depeading
on both g" and the fields, and their dedvatives), rhe ‘dowble invariamce’
condition of the previous sectiom being assumed to bold. The teasor '
15 as usual defined in terms of the varational dervative of the matter
lagrangian density in respect of g"'. The second identity of the Boundary
theorem, arising out of the quasi-iavariance of the matter action alone,
takes the form

S AL izss BE
'\/_gru +bhE"Jc ao{b:“agp’*'bh a¢w ) (27)

where J7 is the Nocther current familiar from Noether's first theorem
(associated with the “canonical” stress-energy tensor), and as above the
two f-coefficients depend on the form of the Lic drags of the ¢, and g™
fields. We sec immediately that whea the equations of motion for &/ the

matter ficlds arc satisfied (E'=0), whatever thore fields may be, J—gT¢

6 This or related results have appeared in various plces in the litecature since 1918,
appareatly largely independendy. We draw special attention to Utiyama (1956, 1959),
containing (we believe) the fist peneral weatment. A detsiled discussion of the
Boundary theorem is found in Brading and Brown (2001).
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differs from J° by a divergence term. Now from the third identity of the
Boundary theorem, which is an antisymmetrisation condition, we can
derive:

oL oL
99,1 8" 5+ b =0, 28
{ 9 ao..,} G

so the divergence of j7 vanishes if and only if the divergence of J:ET:
does. (Of course, in the case of flat spacetime and inertial coordinates,
we may replace “J:-—gT: » by “TS” in the last sentence.) Returaing to the
particular case of Sp discussed in section 1L, we recover (10) from (27),
using Maxwell equations (2) 2ad the fact that the second b-coefficient
takes the form &JA,.

There is another remarkable coasequence of the third
(antisymmetrisation) identity related to the Boundary theorem which
was effectively pointed out by Hilbest in 19157 and noted more recently
in Basbashov and Nestereako (1983). Suppose the lagrangian density Ly,
for matter is a functional of a vector ficld B,, its first derivatives and g,
and suppose furthermore that the matter-related part of the action is
strictly invariant under arbitracy diffeomorphisms. Then the thixd
identity yields

oL, L.
— 2
38, 3B, (29)

This implies that the derivatives of B, can only appear in L, in the
combination B, — B, . Barbashov and Nesterenko stressed that this

requirement is natural givea the requirement of general covariance and
the fact that the tensor B, ,—B,, is unaffected when the derivatives

therein are replaced by covarant ones. But suppose that we introduce

the further requirement that L, be 2 functional only of g™ and the fiest
derivatives of B, and not of B, Then rthe covarianse of the matter

equations of motion wnder the local gawge (Iransformation
’
B, —» B, =B, +0,0,

for an arbitrary scalar field 0, s assured, Under certain conditions then,
we sce the emergeace of a connection between geneal covariance and

27 Hilbert (1915). In this cornection, se¢ the useful discussion in Sauer (1999), secticn 3.3,
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local gauge symmetry. Indeed, the simplest invariant action consistent
with these conditions is arguably (1)!

VII. Einstein’s struggle with general covariance

Einstein’s own strugple with general covariance had two main
components. The fisst was overcoming the threat of snderdetermination
which arose in the hole argument—an cpisode well-rehearsed in the
historical and philosophical literature. We will say no more about it
except to mention, 2 litde later, that its solution seems to have provided
for Einsten not just the removal of a conceptual obstacle related to
genceral covariance but a positive, extra motivation for the principle. The
second component was overcoming the challenge of Krezschmann, and
specifically the vacuity charge. It is well-known that Finstein (1918)
addressed this issue, and argued that there is good reason why general
covatiance had proved to have “considerable heuristic force™ in his own
work on gravitaton. This reason has to do, once again, with an
interpretation of the principle that transcends Kretschmann’s concerns.
The principle for Einstein, which he reiterated decades later in his
Autobiographical Notes,” was not just that a theory should have a
coordinate general formulation, but that it be such that #4is formulation
1s the “simplest and most transparent” one available 1o it

Thete has been debate in the literature as to precisely what Einstein
meant here” When he proceeds to cite the case of Newtonian
mechanics  and gravitaton as being ruled out “practically if not
theoretically” by this principle, it seems that the damage is being caused
in the theory by the absolute nature of the flat affine structure of
spacetime as well as of the mettic structure of both space and time, all of
which allows for significant simplification of the dynamical description
when restricted to global inertial coordinate systems. Was thea Einstein
essentially ruling out the existence of absolute objects—entities which
act on other objects but which are not acted back on—of a kind that
would open up the possibility of preferred coordinate systems relative
to which some or all the laws of physics would take an especially simple
form? Explicit rejection of absolute objects would certainly become a

B Einstein (1970), p. 69.
2 For a helpful discussion see Norton (1993), sections 5.2 and cspecially 5.5.
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fearare of his 1920s writings.®® If this was the core of Einstein’s respoanse
to Kretschmann in 1918, it was esseatally 20 anticipation of the view of
Anderson and Trautman that has already been referred to in this papes,
and that was also defended in the texts by Misner, Thorne 2nd Wheeler,
by Wald and by Obsnian aand Ruffini? (J. Barbour, who extols Einstein’s
reply to Kretschmann® has made a compelling case for the prima Sfacie
startling claim that Newtonian theory itself is, whea formulated geaerally
covagantly, several distinct theosies, depending on the constant
aumerical values assigned to the epergy aad angular momentum of the
entire universe. These different theories have differing deprees of
simplicity, the greatest simplification by far being obtained when the
mentioned constants are zero. It is however far from clear to us whether
even this version of Newtonian theory —whose conceptual merits were
iluminated so brilliantly by Barbour and Bertotti (1982)*%—would have
catisfied Eiastein’s 1918 priaciple 2bove.)

But there may have been more to Einstein’s reasoning than this. Is it
conceivable that a violation of the simplicity and transparency criterton
might also be caused by something other than the existence of absolute
objects? Einstein appears to have thought so until late 1916.

We mentioned in section III that the first abbreviated version of the
I.T action that Einstein proposed for gravity was defined relative to
those special coordinate systems for which J:E =1. In his important
1916 review paper, Einstein promised an “ymportant simplification of
the laws of nature” produced by the choice of these coordinates, and
towards the end of the paper he considered that he had indeed achieved
a “considesable simplification of the formulae and calculations”, and 2ll in
s manner consistent with the principle of general covariance™ Had
Einstein stuck fo this line, be coxld ot bave comsistently answered
Kretschmann in the way that be did in 1918. But he did not stick to it.
In November 1916, Einstein wrote o Weyl saying he bad come to the

30 §ee particulasly Finstein (1924), pp. 15-16 of the English teanslation. For further
discussion of Finstein’s commitment to the action-reaction principle, se¢ Anandan
and Brown (1995). Ohanian and Ruffini (1994), p. 374, make a wsef] distinction
between absolute eatities which vacy under coordinate transformations and those
that don’t—it being only the former that are ruled out

31 See Misoer, Thoroe and Wheeler (1973), section 12.9: Wald (1984) p. 57; Ohanian
and Ruffini (1994), section 7.1

32 See Barbour (2001).

33 For a recent philosophical analysis of this paper, sec Pooley and Brown (2002).

3 See Finstdn (1916a), pp- 130, 156 of the Eaglish tzanshtion.
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view that no restrictions on the choice of coordinates should be used in
the action principle 2approach to GR.3 The reasons he gave were case of
calculation and the transparency of the connection between general
covatiance and the conservation laws in GR. This switch of thinking on
Einstein’s part deserves more analysis,® as it suggests that the cateria of
simplicity and transparency that he wused in his 1918 reply  to
Kretschmann may have been more subtle than is commonly thought?

VIII. General covariance as a gauge-type symmetry

Our final remarks, however, are stimulated by other aspects of
Einstein’s treatment of the principle of general covariaace in the
mentioned 1916 paper.  First, any readet must be struck by the
multiplicity of reasons that Einstein adduces in favour of the principle.
He cites Mach’s principle and the weak equivalence principle in section
2, the non-operational sigaificance of coordinate differences for rotating
frames as well 2s the coordinate-independence of physical happenings
(the ‘point-coincidence’ argument familiar from his treatment of the
hole problem) in section 3—all in justification of general covariance.
Einstein’s instinctive feel for the importance of the principle was sdll
cleatdly outstripping his ability to articulate its fundamental motivation.
Secondly, despite the multiplicity of arguments, it appears that Einstein
is consisteatly viewing the principle s an “extension” of the relativity
principle shared (as he correctly says) between classical mechanics and
the special theory of relativity (SR). This view in particular has attracted
considerzble criticism—even, later, from Einstein himself 3

One such crtic was Roberto Torrett, who in his monumental
Relativity  and  Geometry stressed that there are  “considerable

35 See Finstein (1998).

¥ Some useful remarks concerming Einstein’s use of coordinates satisfying the above
detesminant condition ace found n Janssen (1997), pp- bi-lii

T Fiastein's initial flirtation with privileged, simplifying coordinate systems in GRis
a precursor of V. Fock's defence, forty years later, of the special status of what he
called “barmonic” coordinate systems, ie those satisfying the de Donder relations

(\/—gg") =0 2and relative 1o which the Einstein field equations tke the “reduced”

form (c.f Wald 1984, p. 261). Deuils of Fock's argument and its catical reception are
found in Norton 1993, section 9.1. This issue deserves more discussion in the
philosophical literature.

* Torretti cites a drafr Jerrer of Einstein to Sommerfeld of 1926 to this cffect (Torrettt
1983, note 4, p. 316).
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differences of meaning and motivation” separating geseral covariance
from the relativity principle. Torretti argued that the former can not be
a constraint on theores in the manner of Lorentz covariance, on 2
number of technical grounds. But his principle argument was that the
inertial coordinate systems iovolved in SR have a “fixed metrical
meaning” and the iovariance group of transformations s "3
representation  of the group of motions of the underlying flat
spacetime”. The structure of the set of spaceume coordinate
transformations involved in general covariance, on the other hand,

betokens only the differentiable structure of the spacetime manifold, but has
nothing to say about the spacetime metric or its group of motions (which if
the Riemann teasor varies frecly from point to point, is probably none other
than the mivial group, consisting of the identity alone).>?

Now it is surely a sign of the confusing nature of this whole issue that
Anderson used ecssentially the same point to argue in favour of the view
that general covariance is 2 symmetry in the same mould as Lorentz
covarance! In SR, Lorentz transformations are ‘symmetries’ for
Anderson in the sease that they preserve the absolute spacetime
structure—the Minkowski metric. As the absolute structure is removed
in the transition to GR, the symmetzry group defined in this way now
coincides with the covariance group.*® (This accounts for Anderson
refersing to the principle as “general invarance”, rather than “gencral
covariance”;' it has of course gone beyond mere coordinate generality,
as we have seen) Again, what is going on here is essentially the same as
what part of Einstein’s reply to Kretschmann may have been: just as the
relativity principle prohibits the existence of a proper subset of the
inertial frames in SR relative to which the fundamental laws of the non-
gravitational interactions take an especially simple form, so the absence
of absolute objects in GR prohibits the existence of privileged
stmplifying coordinate systems (locally inertial or otherwise) for
gravitational physics.

But our instincts are more with Torretti. Our reason this time is not
connected with the Noether theorems. If anything, these treat Loreatz
transformations in SR and diffeomorphisms in GR essentially on a par: 2s

3% Torretd (1983), p- 154.

40 See Andesson (1967), pp. 87.

M See Andexson (1967) section 10-3. Anderson’s terminology is also used by
Trautman (1966) and Ohanian and Ruffini (1994), p. 374
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Nocther symmetres of a given action. But before we go on, 2 word of
clarification 1s in order.

We should not be comparing general covasance in GR with the
relativity principle, say, in SR with its flar spacetime. We should be
comparing general covariance with the familiar symmetries that emerge
in the special relativistic lmit of GR, Le. the local structure of GR that is
perfectly consistent with the existence of curvature. In this case, we
immediately see a difference  between the ‘symmetries’ uader
discussion. General covasiance is an exact symmetry of gravitational
physics; the traditional spacetime symmetres like the relaavity
principle are not. They hold approximately: morze specifically they are
concerned with the form of the laws of the non-gravitational interactions
appropriate to ‘small’ regions of spacetime in which curvature caa be
neglected. But #his is not the distinction we are after.

What in our view is lacking in many of the discussions of general
covanance is recognition of a fact that does not appear directly in the
relevant mathematical analysis, The essential difference between gauge-
type symmetries (of which general covariance is an instance) and the
usual continuous symmetres associated with the tangent space structure
of spacetime (such as the relativity prnciple and the homogeneity of
space and time) is that only the latter bave am active interpretation in
terms of isolated swbsystems of the wmiverse.

We hasten to clarify that the literature on the hole argument is full of
reference to “active” diffeomorphisms, where it is the arrangement of
the fields on the spacetime manifold that is altered, rather than the
assignment of coordinate labels to eveats. Iadeed the hole argument can
bardly be formulated without such a notion. But the fundamental fesson
of the hole argument is that this aotion of “active” is purely
mathematical 2 What we have in mind, in contrast, is in the spirit of the
Galilean ship experiment, where a laboratory is physically boosted in
relation to some fixed part of the environment. So one essential aspect
of this experiment is that not everything in the universe is being
‘dragged” by the transformation. The rmswlt 5 a  ‘selective’
transformation—bui ome that can be seew, and which may in principle
affect the form of the laws of non-gravitational physics pertaining to
processes occurning in the laboratory. The other important aspect is

%2 A3 Anandan aptly put it, the solution of the hole zrgumear “abolishes the
distinction between passive and active general covamance”; cf Apandan (1996), p.
14,
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that the relativity principle etc. involve rigid transformations, which
when the spacetime region of interest is approximately flat are actively
implementable in practice.

The case for viewing the traditional symmetties as tied up with the
possibility of =ngidly translating, rotating, boosting etc. iselased
‘laboratories’ —proper swbsystems of the universe—containing further
subsystems undergoing mutual interaction has been made in detail
elsewhere®? so we will not claborate further here.
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