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So it is that all human cognition begins with intuitions,
proceeds from there to concepts, and ends with ideas.

Kant, Critique of Pure Reason. (A702/B730)
Epigram to Hilbert (1899)

8.1 Introduction

In November and December 1915, Hilbert gave two presentations to the Royal
Göttingen Academy of Sciences under the common title ‘The Foundations of
Physics’. Distinguished as ‘First Communication’ (Hilbert, 1915b) and ‘Second
Communication’ (Hilbert, 1917), the two ‘notes’, as they are widely known, even-
tually appeared in the Nachrichten of the Academy. The first quickly entered the
canon of classical general relativity but has recently become the object of renewed
scholarly scrutiny since the discovery (Corry, Renn and Stachel 1997) of a set of
printer’s proofs dated December 6, 1915 ((Hilbert, 1915a), henceforth ‘Proofs’).
Hilbert’s second presentation has not received the same detailed reconsideration,
with the recent exception of an extended study offered by Renn and Stachel
(1999/2007). While we agree with much of their detailed technical reconstruction,
we profoundly disagree with the assessment of Renn and Stachel that the second
note shows that Hilbert had abandoned his own project (set out in the first note), and
is working on a variety of largely unrelated problems within Einstein’s. In our opin-
ion, this assessment rests on misunderstandings concerning the aims, content, and
significance of the second communication, as well as its links to the first. Our aim in
this paper is to offer an alternate narrative, according to which Hilbert’s second note
emerges as a natural continuation of the first, containing important and interesting
further developments of that project, and above all shedding needed illumination on
Hilbert’s assessment of the epistemological novelty posed by a generally covariant
physics.

Hilbert’s notes on ‘Foundations of Physics’ traditionally have been assessed
solely in terms of the contributions they made to general relativity, as that theory is
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known in its completed form. From this vantage point, they present a mixed record of
achievement, ranging from genuine insight (the Riemann scalar as the suitable invari-
ant for the gravitational action) through incomprehension (Hilbert’s interpretation of
electromagnetism as a consequence of gravitation) to abject failure (attachment to
the untenable electromagnetic theory of matter of Gustav Mie). The usual implica-
tion is that Hilbert’s principal intent in November 1915 was to arrive at a theory of
gravitation based on the principle of general invariance in one blinding flash, master-
fully wielding an arsenal of advanced mathematics. Our main contention is that such
assessments radically occlude internal motivations, which are largely logical and
epistemological, and so cast them in a misleading light. In particular, the explicitly
stated epistemological intent of the ‘axiomatic method’ is ignored, as are Hilbert’s
own express assertions regarding his construction as a triumph of that method. But
set within the context of the ‘axiomatic method’, Hilbert’s two notes may be seen to
have the common goal of pinpointing, and then charting a path towards resolution
of, the tension between causality and general covariance that, in the infamous ‘hole
argument’, had stymied Einstein from 1913 to the autumn of 1915. Unlike Einstein’s
largely informal and heuristic extraction from the clutches of the hole argument,
Hilbert stated the difficulty in a mathematically precise manner as an ill-posed initial
value problem, and then indicated how it can be resolved. As we will show, material
cut from the Proofs establishes this essential thematic linkage between the two notes
and redeems Hilbert’s claim that tension between causality and general covariance,
precisely formulated in Theorem I of the first note, was the ‘point of departure’ for
his axiomatic investigation.

8.2 The Essential Context: Hilbert’s Axiomatic Method and
Kantian Epistemology

Hilbert’s first note opens with a declaration that the ensuing investigation of the foun-
dations of physics is undertaken ‘in the sense of the axiomatic method’ (‘im Sinne
der axiomatischen Methode’), and it concludes with the striking claim that the results
obtained redound ‘certainly to the most magnificent glory of the axiomatic method.’
Unless mere rhetorical embellishment, these passages establish that the ‘axiomatic
method’ (whatever that may be) played an integral role in the enterprise at hand.
Understanding the significance of Hilbert’s setting his results squarely within the
frame of the axiomatic method is accordingly essential.

What, then, is the axiomatic method? In the literature, it has been widely
assumed that Hilbert’s references to ‘axiomatic method’ simply signal his deriva-
tion of 14 fundamental field equations, as well as several subsidiary theorems, from
two principal axioms (e.g., Guth, 1970, 84; Mehra, 1974, 26, 72 n. 145; Pais, 1983,
257). However, as can be documented in numerous lecture courses going back at
least to 1905, the term not only implicates a typical mathematical concern with the
rigorous explicit statement of a theory, but also connotes a specifically logical and
epistemological method of investigation of mathematical theories (including those
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of physics) that Hilbert pioneered, and which he saw as closely tied to the nature of
thought itself.1

In published articulation, the axiomatic method debuted in Hilbert’s classic
Gauss–Weber Festschrift essay, Grundlagen der Geometrie (1899). The essay’s
epigraph has been little noticed, yet is worth quoting in the original German, for
it is Kant’s most concise statement of how cognition requires, and results from, the
distinct sources of intuition, concepts, and ideas:

So fängt denn alle menschliche Erkenntnis mit Anschauung an, geht von da
zu Begriffen und endigt mit Ideen. (A702/B730)

As Kant’s directive prescribes, the axiomatic method is conceived as a logical analy-
sis of cognitions that begins with certain ‘facts’ presented to our finite intuition or
experience. Both pure mathematics and natural science alike begin with ‘facts’, i.e.,
singular judgments about ‘something . . . already . . . given to us in representation (in
der Vorstellung): certain extra-logical discrete objects, that are intuitively present as
an immediate experience prior to all thinking’.2 Analysis next determines the con-
cepts under which such given facts can be classified and arranged, and then attempts
to formulate the most general logical relations among these concepts, a ‘framework
of concepts’ (Fachwerk von Begriffen) crowned with the fewest possible number of
principles. The axioms standing at the pinnacle of the Fachwerk von Begriffen are not
only general but also ideal. They are, as far as possible, independent of the particular
intuitions (and so, concrete facts) from which the process started. By virtue of their
ideality, and thus their severance from experience and intuition, the self-sufficiency
of the mathematical subject matter (which may then be developed autonomously),
quite apart from any particular reference associated with particular terms or relations,
is thereby highlighted. Axioms thus play a hypothetical or guiding role in cognition.
As will be seen, Hilbert considered axioms to be ‘things of thought’ or indeed, ‘ideas’
in Kant’s regulative sense, effecting a separation between logical/mathematical and
intuitional/experiential thought, even as the latter has thus been arranged in deductive
form. Indeed, it is just ‘the service of axiomatics’

to have stressed a separation into the things of thought (die gedanklichen
Dinge) of the (axiomatic) framework and the real things of the actual world,
and then to have carried this through.3

Use of the axiomatic method does not aim, at least in the first instance, at the
discovery or recognition of new laws or principles, but at the conceptual and logical

1 Hallett (1994), 162, quotes from Hilbert’s 1905 Summer Semester Lectures ‘Logische Prin-
cipien des mathematischen Denkens’, ‘The general idea of [the axiomatic method] always
lies behind any theoretical and practical thinking.’

2 Hilbert (1922); Engl. trans., 1121. Of course, for Hilbert, the basic objects of number
theory, the positive integers or rather the signs that are their symbolic counterparts, are
given in a quasi-spatial, but not in a spatial or temporal intuition.

3 Hilbert Winter Semester lectures 1922–1923 Wissen und mathematisches Denken.
Ausgearbeitet von Wilhelm Ackermann. Mathematische Institut Göttingen. Published in
a limited edition, Göttingen, 1988; as cited and translated in Hallett (1994), 167.
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clarification or reconstruction of known ones.4 Ultimately, the axiomatic method is
concerned with demonstrating that the axioms selected for a theory possess the three
meta-logical properties or relations of mutual consistency, independence, and com-
pleteness.5 Combining these aspects together, successful pursuit of the axiomatic
method leads to a ‘deepening of the foundations’ (Teiferlegung der Fundamente),
i.e., of the mathematical foundations, of any theory to which it is applied, and this,
indeed, is the overall objective.6

8.2.1 Mie’s Theory and the Axiomatic Method

We recall that the task of the axiomatization of physical theories was the sixth in the
famous list of 23 mathematical problems Hilbert posed at the 1900 International
Congress of Mathematicians in Paris. Inclusion of the axiomatization of physics
among the other purely mathematical problems appears rather incongruous until
Hilbert’s lifelong interest in physics is taken into account.7

The investigations on the foundations of geometry suggest the problem:
To treat in the same manner, by means of axioms, those physical sciences
in which mathematics plays an important part.. . . If geometry is to serve
as a model for the treatment of physical axioms, we must, with a small
number of axioms, try to include as large a class of physical phenomena
as possible, and then by adjoining new axioms to arrive gradually at the
more special theories.. . . As he has in geometry, the mathematician will
not merely have to take account of those theories coming near to reality
(Wirklichkeit), but also of all logically possible theories. He must be always
alert to obtain a complete survey of all conclusions derivable from the
system of axioms assumed. Further, the mathematician has the duty to test
exactly in each instance whether the new axioms are compatible with the
previous ones. The physicist, as his theories develop, often finds himself
forced by the results of his experiments to make new hypotheses, while he
depends, with respect to the compatibility of the new hypotheses with the old
axioms, solely upon these experiments or upon a certain physical intuition,
a practice which is not admissible in the rigorously logical construction of

4 See Majer (2001), 19.
5 Hilbert’s 1905 Summer Semester Göttingen lectures ‘Logische Prinzipien des mathematis-

chen Denkens’ already characterized the general idea of the axiomatic method as striving
for the consistency, independence, and completeness of an axiom system. See Peckhaus
(1990), 59.

6 Hilbert (1918), 407 (Engl. trans., 1109): ‘The procedure of the axiomatic method, as it is
expressed here, amounts to a deepening of the foundations of the individual domains of
knowledge, just as becomes necessary for every edifice that one wishes to extend and build
higher while preserving its stability.’

7 Corry (2004) amply demonstrates the extent of this interest, examining in considerable
detail Hilbert’s many lecture courses and seminars devoted to various physical theories or
questions of current physics.



8 Hilbert’s Axiomatic Method and His “Foundations of Physics” 179

a theory. The desired proof of the compatibility of all assumptions seems to
me also of importance, because the effort to obtain such proof always forces
us most effectively toward an exact formulation of the axioms.8

Three items of interest mark this passage.

• Geometry is regarded as a model for the axiomatization of physical theories.
• In axiomatizing, the mathematician is to take account of ‘all logically possible

theories’, not just theories ‘near to reality’, and so the axiomatic method is ideally
suited for setting up a speculative or hypothetical theory.

• Axiomatization has the express purpose of testing the consistency of new
hypotheses with previously adopted axioms and assumptions, a task that requires
‘the rigorously logical construction of a theory’ in place of its informal statement
in experiential or intuitive terms.

Above all, we wish to stress the hypothetical character of Hilbert’s axiomatic
approach to physics. This aspect was explicitly underlined by Hilbert’s former
student and Göttingen physics colleague, Max Born, in a tribute on the occasion
of Hilbert’s 60th birthday.

[B]eing conscious of the infinite complexity he faces in every experiment
[the physicist] refuses to consider any theory as final. Therefore . . . he abhors
the word ‘axiom’ to which the sense of final truth clings in the customary
mode of speech. . . . Yet the mathematician does not deal with the factual
happenings, but with logical connections; and in Hilbert’s language the
axiomatic treatment of a discipline in no way signifies the final setting up of
certain axioms as eternal truths, but the methodological requirement: Place
your assumptions at the beginning of your considerations, stick to them and
investigate whether these assumptions are not partially superfluous or even
mutually inconsistent.9

These points are of special significance for understanding the role of the Mie theory
in Hilbert’s two notes on the ‘Foundations of Physics’.

As both Einstein and Hilbert were aware in 1915, Einstein’s gravitational theory,
though in principle capable of encompassing all matter fields into space-time
geometry, did not itself suppose any particular theory of matter. Hilbert knew of the
Mie theory at least since the discussion of it at the Göttingen Mathematical Society
in December 1912, and again in December 1913, when Born had put it into a more
canonical mathematical form (Corry, 1999, 176). Certainly, the fact that Mie had
sought to derive field equations of a generalized Maxwellian electrodynamics from
the axiom of a Lorentz invariant ‘world function’ fitted very naturally into Hilbert’s
axiomatic approach. A central attraction of the Mie theory was that then, coupled
with Einstein’s theory of gravitation, it enabled a hypothetical axiomatic completion

8 As translated in Gray (2000), 257–258.
9 Born (1922), 90–91, our translation. Unless otherwise noted, all translations in this paper

are our own.
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of physics that could be studied by drawing consequences from the amalgamation
of the two theories. In this regard, Hilbert’s ‘theory’ is a canonical illustration of
the mode of investigation of the ‘axiomatic method’, in Hilbert’s own most pre-
cise characterization of that method, as the ‘mapping’ (Abbildung) of a ‘domain of
knowledge’ (Wissensgebiet) onto

a framework of concepts so that it happens that the objects of the field
of knowledge correspond to the concepts, and the assertions regarding the
objects to the logical relations between the concepts. Through this map-
ping, the (logical) investigation becomes entirely detached from concrete
reality (Wirklickkeit). The theory has nothing more to do with real objects
(realen Objekten) or with the intuitive content of knowledge. It becomes a
pure construction of thought (reine Gedankengebilde), of which one can no
longer say that it is true or false. Nevertheless, this framework of concepts
has significance for knowledge of reality in that it presents a possible form
of actual connections. The task of mathematics is then to develop this frame-
work of concepts in a logical way, regardless of whether one was led to it by
experience or by systematic speculation.10

Yet the Mie theory was attractive for a number of other mathematical and
philosophical reasons that merit illumination. In particular, Hilbert saw distinct
advantages in the Mie theory over the only other rival electromagnetic theory of
matter of consequence in 1915, the electron theory, on which Hilbert had lectured
in the summer of 1913 and would again in the summer of 1917 (Corry, 1999, 174,
183). Namely, the Mie theory was a priori consistent with the principle of causal-
ity in two ways that the electron theory was not. First, it employed only differential
equations, whereas the electron theory, as Hilbert noted in lectures in the summer
of 1916 (Hilbert, 1916a, 101–102), was a mixture (ein Gemisch) of functional, dif-
ferential, and integral equations. From the standpoint of consistency with the field-
theoretic prohibition against action-at-a-distance laws, the Mie theory was clearly to
be preferred to the electron theory.

Second, the Mie world function yielded four electrodynamical equations for the
four unknown electrodynamic potentials. From given boundary and initial condi-
tions, one could show that the state of the world at any future time could be univocally
determined via these equations through specification of the values of these potentials
at any prior time, as required by the principle of causality (as Hilbert understood
that principle). Notoriously, the Mie theory purchases its causal determination at the
cost of gauge invariance (the Mie potentials have ‘absolute’ values). Ironically, what
current wisdom deems precisely wrong about the Mie theory was thus a philosoph-
ical ground in favor of it cited by Hilbert.11 In sum, in the summer of 1916, and so

10 Hilbert’s WS 1921/1922 Lectures on the ‘Grundlagen der Mathematik,’ as cited and trans-
lated in Hallett (1994), 167–168.

11 Within the broad framework of Mie’s theory, one might hope to find a matter representa-
tion based on generalized Maxwell equations following from a Lagrangian containing only
gauge invariant terms.
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after Einstein’s canonical presentation of general relativity (Einstein, 1916), Hilbert
continued to regard the standing of the principle of causality in the new physics
of Einstein’s principle of general invariance as unclear (Hilbert, 1916a, 110). Mie’s
theory, however, was deemed suitable to be incorporated into Hilbert’s axiomatic
construction by its a priori consistency with the requirement of causality. Finally,
we shall see that there were also a posteriori reasons justifying Hilbert’s incorpora-
tion of Mie’s theory. Namely, Hilbert would show that the gauge structure of electro-
magnetism was recovered by his generally covariant generalization of Mie’s theory,
and that his energy tensor for non-gravitational energy coincided with Mie’s energy
tensor in the special relativistic limit. Both of these results are crucial to Hilbert’s
otherwise problematic claim that electrodynamic phenomena are a consequence of
gravitation.

8.3 Hilbert’s First Note: What Was Hilbert’s Aim?

As legend has it, in November 1915, Hilbert engaged with Einstein in a competition
to arrive at the generally covariant field equations of gravitation. Certainly, there
was some sort of a ‘race’: no other term quite so well suits the frenzied activities of
Einstein and Hilbert in that month. But this can by no means have been Hilbert’s only
aim, for he postulated an action integral containing a Lagrangian ‘world function’ for
both the gravitational and the matter fields, from which the fundamental equations
of a pure field physics might be derived. In astonishing testimony to his belief in the
axiomatic method’s power to ‘deepen the foundations’ of a theory, this objective is
stated as the main aim in both published versions of Hilbert’s two notes (1915b, 395;
1917, 63–64).

The first note accordingly begins with recognition that the investigations of
Einstein and Mie have ‘opened new paths for the investigation of the foundation
of physics’. Expressing Einstein’s theory of gravitation in terms of the 10 indepen-
dent gravitational ‘potentials’ gμν , and providing a generally invariant generaliza-
tion of Mie’s theory expressed in terms of the four electromagnetic vector potentials
qs, Hilbert employed sophisticated mathematical techniques to draw out the conse-
quences of his two principal axioms. It is clear that Hilbert was extremely pleased
with the axiomatic conjunction of the two theories. The triumphal language at the end
of his first note expresses Hilbert’s great satisfaction with the illumination gained in
revealing unsuspected mathematical relations between the field equations for gravi-
tation and for electrodynamics. In what follows we sketch how this illumination was
achieved.

8.3.1 Schematic Outline

The core of Hilbert’s approach lies in two axioms, which he states immediately after
some preliminary definitions.

• AXIOM I (‘Mie’s Axiom of the World Function’). Hilbert proposed a variational
argument formulated for a ‘world function’ (Lagrangian density) H , depending
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upon the 10 gravitational potentials gμν , their first and second derivatives, as well
as the four electromagnetic potentials qs, and their first derivatives:

δ

∫
H
√

gdω = 0 (g = det |gμν |, dω = dw1dw2dw3dw4).

• AXIOM II (‘Axiom of General Invariance’). H is an invariant with respect to
arbitrary transformations of the ‘world parameters’ ws(s = 1, 2, 3, 4).

The function H is not further specified. But Hilbert’s use of the term ‘world
parameters’ in place of the standard locution ‘space-time coordinates’ is instruc-
tive. As expressly stated in his second note, and as Mie noted that same year,12 it is
intended to highlight the analogy Hilbert sought to draw between the arbitrariness
of parameter representations of curves in the calculus of variations, and the arbitrari-
ness of coordinates on a space-time manifold. Hilbert was, of course, a grand master
of the calculus of variations, as his first note demonstrated. In both cases, objec-
tive significance will accrue only to objects invariant under arbitrary transformation
of the parameters, respectively, coordinates. Precisely the same language of ‘world
parameters’ is also used in the Proofs, prima facie evidence that his views regarding
the lack of physical meaningfulness accruing to space-time coordinates were already
in place. Similarly, in both versions Hilbert affirms that his second axiom is

the simplest mathematical expression for the demand that the interconnec-
tion of the potentials gμν and qs is, in and for itself, completely independent
of the way in which one designates the world points through world para-
meters (1915a, 2; 1915b, 396).

We note that in the 1924 republication of Hilbert’s two notes in Mathematische
Annalen, the term ‘world parameters’ has been dropped, while the sentence has
been reformulated explicitly in terms of the physical meaninglessness of space-time
coordinates:

Axiom II is the simplest mathematical expression for the demand that the
coordinates in themselves have no manner of physical meaning, but rather
represent only an enumeration of the world points in such a way as is
completely independent of the interconnection of the potentials gμν and qs

(Hilbert, 1924, 4).

But given what is surely a semantic equivalence between the two sentences, we
cannot agree with Corry’s assessment (2004, 401) that this change (‘Hilbert now
added a paragraph’) represents an alteration ‘distancing (Hilbert) from the position
that was variously insinuated in his earlier versions’.

12 Hilbert (1917), 61: ‘Just as in the theory of curves and surfaces an assertion for which
the parameter representation of the curve or surface has been chosen has no geometric
meaning for the curve or surface itself, so we must also in physics designate an assertion as
physically meaningless (physikalisch sinnlos) that does not remain invariant with respect
to arbitrary transformation of the coordinate system.’ Mie (1917), 599, also stressed this
analogy.
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Before proceeding further, Hilbert then stated, without proof, a theorem described
as the ‘Leitmotiv of my theory’, whose content may be more briefly stated as follows:

• THEOREM I (‘Leitmotiv’). In the system of n Euler–Lagrange differential equa-
tions in n variables obtained from a generally covariant variational integral such
as in Axiom I, 4 of the n equations are always a consequence of the other n − 4
in the sense that 4 linearly independent combinations of the n equations and their
total derivatives are always identically satisfied.13

One of Hilbert’s principal claims, to be discussed below, is that, as a consequence
of Theorem I, electromagnetic phenomena may be regarded as consequences of
the gravitational. The theorem also gives rise to Hilbert’s ‘problem of causality’
(see Section 8.4.1).

Hilbert next turns to the derivation of the Euler–Lagrange differential equations
from his invariant integral, by differentiation of H with respect to the gμν and their
first and second derivatives. This yields ten equations for the gravitational potentials,

∂
√

gH

∂gμν
−

∑
k

∂

∂wk

∂
√

gH

∂gμν
k

+
∑
k,l

∂2

∂wk∂wl

∂
√

gH

gμν
kl

= 0, or [
√

g H ]μν = 0

(8.1)[
gμν

l =
∂gμν

∂wl
; gμν

l k =
∂2gμν

∂wl∂wk

]
,

while differentiation of H with respect to the electromagnetic potentials qs and their
first derivatives yields four equations,

∂
√

gH

∂qh
−

∑
σ

∂

∂wk

∂
√

g H

∂ qh k
= 0, or,

[
√

gH ]h = 0
[
qhk =

∂qh

∂wk
(h, k = 1, 2, 3, 4)

]
.14 (8.2)

The fourteen equations [(8.1)] and [(8.2)] in Hilbert (1915b) are termed ‘the basic
equations of gravitation and electrodynamics or generalized Maxwell equations’.
On the assumption that the Mie theory renders a viable theory of matter, these equa-
tions encompass the entirety of fundamental physics. The remainder of the paper
concerns Hilbert’s treatment of energy, which includes his demonstration of a con-
nection between the phenomena of gravitation and of electromagnetism. We turn to
this issue now.
13 Hilbert (1915a), 2–3; (1915b), 397. However, as Klein (1917), 481, first pointed out,

since Hilbert regards the invariant H as the additive sum of two general invariants K + L,
there are then 8 identities between the 14 field equations. According to Klein, 4 of these
are a purely mathematical consequence of the 10 gravitational equations. The other 4
permit Hilbert’s interpretation of the electromagnetic equations as a consequence of the
gravitational equations.

14 The form of equations [(8.1)] and [(8.2)] is trivially different algebraically between the
Proofs and the published version. Here we follow the published version.
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8.3.2 The Connection Between Gravitation and Electromagnetism

On the basis of Theorem I, Hilbert concluded that the four equations [(8.2)] are a
consequence of the ten equations [(8.1)], such that, ‘in the sense indicated, electro-
dynamic phenomena are effects of gravitation’ (1915a, 3; 1915b, 397). This claim
is certainly not part of the standard lore of general relativity, and it has repeat-
edly come under severe criticism, most recently by Renn and Stachel (1999, 36–41;
2007, 893–899) and by Corry (2004, 336–337). Since Hilbert relied on a specialized
treatment of matter and non-gravitational energy stemming from Mie, we consider
only Hilbert’s internal (to his own theory) justification for this claim.15 For present
purposes, we wish to highlight three results that Hilbert proudly attributed to the use
of the axiomatic method:

• general covariance, as we shall prefer to say, is connected with the gauge
structure of electromagnetism;

• the electromagnetic energy tensor of Hilbert’s generally covariant theory
yields that of Mie in the special relativistic limit;

• the gravitational equations entail four mutually independent linear combinations
of the electromagnetic equations and their first derivatives.

In our opinion, the first and third of these results express one of the two central out-
comes reached by Hilbert, by means of the axiomatic method: for any theory which
seeks to combine generally covariant theories of gravitation and electromagnetism,
there follow strong restrictions on the form of the electromagnetic part of the theory
as a consequence of the structure of the gravitational part of the theory.16 However,
we must point out that Hilbert also regarded the second result, concerning the Mie
tensor, as a central achievement of his theory, and indeed a bellwether of its general
correctness.

The first of the above results is obtained as follows. Hilbert’s gravitational equa-
tions are expressed as variational derivatives with respect to the metric (1915a,
11; 1915b, 404) [

√
gK]μν + ∂

√
gL

∂gμν = 0, where the first term is evaluated, in the
published version but not in the Proofs, so that the crucial trace term appears,
[
√

gK]μν =
√

g(Kμν − 1
2Kgμν). Now L is a general invariant that, by Axiom I,

is assumed to depend only on the gμν , the qs, and their first derivatives ∂qs

∂wl . Hilbert
had previously shown that, from Axiom II (the axiom of general invariance) and a
supporting theorem (Theorem II, the Lie derivative of the metric), it follows that L
must satisfy the relations (1915a, 11; 1915b, 403)

∂L

∂qsk
+

∂L

∂qks
= 0.

Thus, even though the Mie theory assigns ‘absolute’ values to the electrodynamic
potentials qs, the matter Lagrangian L in Hilbert’s theory depends only on the anti-
symmetrized derivatives of the qs

15 Hilbert’s treatment of energy is discussed in detail in Sauer (1999), 554–557.
16 Hilbert’s considerations on the tension between general covariance and causality are the

other central outcome.
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Mk s = Rot(qs) ≡ qs k − qk s,

that is, on the electromagnetic field tensor. As Hilbert did not fail to observe, this is a
necessary condition for recovering Maxwell’s theory. Only by additional assumption
is this also the case with Mie’s original theory, but that theory is not generally
invariant (Born, 1914, 28). Hilbert has thus shown that the gauge structure of elec-
tromagnetism follows from general covariance and the other assumptions for L,
emphasizing in italic type that

This result [on which the character of Maxwell’s equations depends] follows
here essentially as a consequence of general invariance, hence on the basis
of axiom II.17

The assumption that nothing else beyond the gμν (but no derivatives of the metric),
the qs, and the so-constrained first derivatives ∂qs

∂wl enter into L also has consequences
for the interpretation of the energy-momentum tensor Tμν in Hilbert’s theory. Since
all non-gravitational energy/matter is contained in L, it is entirely sufficient for
forming Tμν , i.e.,

∂
√

gL

∂gμν
=

√
gTμν .

In this respect, Hilbert’s gravitational field equations differ from Einstein’s in their
interpretation because Hilbert assumed a particular hypothesis about the electro-
magnetic constitution of all matter.18 With this interpretation of Tμν , Hilbert is then
able to show that the matter tensor of his theory yields the electromagnetic energy
tensor of Mie’s theory in the special relativistic limit.19 This is also a fundamental
result, and Hilbert emphasized its significance in Sperrdruck type:

Mie’s electromagnetic energy tensor is nothing other than the generally
invariant tensor obtained by derivation of the invariant L with respect to
the gravitational potentials gμν in the [special relativistic] limit—a circum-
stance that first indicated to me the necessary close connection between
Einstein’s general theory of relativity and Mie’s electrodynamics, and which
convinced me of the correctness of the theory developed here.20

Hilbert regarded this result as a central achievement of his theory, and indeed a
bellwether of its general correctness. Moreover, it must be emphasized that the
‘necessary close connection’ between the two theories has been established through
the axiomatic method, and so will count towards the triumph of that method as
proclaimed by Hilbert at the end of his paper.

17 Hilbert (1915b), 403; at the corresponding place in Hilbert (1915a), 10, the bracketed
expression does not appear.

18 Earman and Glymour (1978), 303; Sauer (1999), 564.
19 For details, see Sauer (1999), 555.
20 Hilbert (1915a), 10; (1915b), 404. Notice that already in the Proofs, Hilbert’s reference is to

‘Einstein’s general theory of relativity’ (der Einsteinschen allgemeinen Relativitätstheorie),
explicitly according due credit to Einstein.
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Finally, Hilbert demonstrated the connection between the field equations of
gravitation and electromagnetism. Using the Lagrangian form of his gravitational
equations in conjunction with a version of the contracted Bianchi identities derived
in his Theorem III (and which follow from Theorem I), Hilbert has shown that the
gravitational field equations in conjunction with the postulate of general invariance
yield four mutually independent combinations of the electromagnetic field equations
and their first derivatives. This is the sense in which the electromagnetic pheno-
mena are consequences of the gravitational. Referring back to the assertion that he
made following his statement of Theorem I, Hilbert claimed, again in italic type for
emphasis:

This is the exact mathematical expression of the above generally stated as-
sertion concerning the character of electrodynamics as an accompanying
phenomenon (Folgeerscheinuung) of gravitation.

We wish to stress that Hilbert clearly viewed this result, as well as the just-mentioned
recovery of Mie’s tensor in the special relativistic limit, as central achievements of
his theory. Neither of these has to do with the explicit formulation of the generally
covariant field equations of gravitation.21

8.4 Differences Between the Proofs and the Published Version

There are three main differences between the Proofs and the published version of the
first note. First, the explicit form of the field equations of general relativity does not
appear in the Proofs. This matter has received considerable attention in the recent
literature, and will not be treated here. Our view, following the careful analyses of
Sauer (1999, 2005), is that the Proofs already contain the correct gravitational field
equations of general relativity in the inexplicit form of a variational principle and the
Hilbert action. The two other differences are related, and will be treated here: in the
Proofs, but entirely missing from the published version, there is a clear statement of
the problem of causality facing any generally covariant theory, as well as a proposed
solution that restricts the applicability of space-time coordinates. Our interest lies in
identifying a thematic link between this text cut from the Proofs and issues treated in
the published second note. This enables us to see that it treats in detail the problem
of causality that is addressed in the Proofs, but dealt with unsatisfactorily there.

8.4.1 Hilbert’s Target: The ‘Problem of Causality’

In the Proofs, but not in the published version of the first note, Hilbert explicitly
spells out the implications of Theorem I for his system of fundamental equations of
physics.
21 Of course, Hilbert’s interpretation of the significance of Theorem I rests on the special

choice of H (and L), and the related assumption of the electromagnetic constitution of
matter that furnishes the definition of Hilbert’s energy-momentum tensor above. Rowe
(2001), 404, observes that it was ‘microphysics not gravitation that Hilbert saw as the
central problem area’. We broadly agree that gravitation was not Hilbert’s primary focus.
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Our mathematical theorem teaches that for the 14 potentials, the above
axioms I and II can yield only 10 equations essentially independent of one
another. On the other hand, by upholding general invariance, no more than
10 essentially independent equations for the 14 potentials gμν , qs, are possi-
ble at all. Therefore, if we want to preserve the determinate character of the
fundamental equations of physics according to Cauchy’s theory of differ-
ential equations, the requirement of four additional non-invariant equations
supplementing [(8.1)] and [(8.2)] is essential. (1915a 3–4)

Thus, independent of the physical validity of his system of fundamental equations,
for which he adduced no evidence whatsoever, Hilbert clearly underscored that
the mathematical underdetermination in question (10 independent equations for 14
potentials) is solely a consequence of his axiom of general invariance.

Befitting its preeminent concern with the consistency of all axioms and
assumptions undergirding a theory, the axiomatic method has revealed a seeming
conflict between general covariance and causality in the sense of a failure of univocal
determination, a conflict characterized in terms of whether any theory satisfying
Axioms I and II admits a well-posed Cauchy problem. Theorem I suggests that
it is a property of any such theory that it does not. Prior to general relativity, as
Hilbert repeatedly emphasized, all physical theories permitting a variational for-
mulation satisfied Cauchy determination in the sense that they yielded precisely
as many independent Euler–Lagrange equations as there were independent func-
tions to be determined. However, the situation is complicated in a generally covari-
ant space-time theory by the freedom to make arbitrary coordinate transformations
(equivalently, diffeomorphic point transformations) of solutions to the field equa-
tions. Formulated for a generally invariant Lagrangian, by Hilbert’s Theorem I this
is the fact that not all of the Euler–Lagrange equations obtained by variation of the
integral invariant with respect to the field quantities and their derivatives are inde-
pendent. More precisely, four of these are always the result of the remaining n − 4
space-time equations. Thus, Theorem I is a precise mathematical statement of the
tension between the postulate of general covariance and the requirement of causality
in the mathematical sense of univocal determination.

Notice that univocal causal determination—in the sense required by a well-posed
Cauchy problem—is not an axiom in Hilbert’s construction. Nevertheless, it is a
requirement satisfied by previous physical theories in variational formulation, and
so its seeming failure in the context of general invariance surely sparked Hilbert’s
interest. But as we have repeatedly stated, in our opinion this is one of the two central
outcomes that Hilbert reached by means of the axiomatic method: any generally
covariant theory raises deep questions about causality, in both the mathematical
and (as we shall see) the physical sense.

Hilbert’s diagnosis in turn marked out a strategy for resolving the apparent ten-
sion between general covariance and failure of univocal determination: to find, if
possible, four conditions additional to the ten independent equations that will render
the Cauchy problem well posed. Finding the ‘missing four space-time’ equations
is the motivation behind the intricate mathematical construction in the Proofs of an
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‘energy form’
E =

∑
s

esp
s +

∑
s,l

el
sp

s
l

(where es is termed the ‘energy vector’, and ps is an arbitrary contravariant vector)
constructed from the tensor density

√
gPgH, where Pg is a differential operator on

the world function H . A prime consideration both here, and in the different treatment
of energy in the published version, will be to recover Mie’s energy tensor as a special
case. While by construction this ‘energy form’ is a general invariant, Hilbert finds
four supplementary conditions by imposing special coordinate restrictions on his
‘energy vector’; namely, that it must satisfy the divergence equation (numbered (15)
in Hilbert, 1915b), ∑

l

∂el
s

∂wl
= 0, iff the four quantities es = 0, (8.3)

where the wl are now special space-time coordinates adapted to this ‘energy theorem’,
as stated in a third, and final axiom appearing only in the Proofs:

• AXIOM III: (‘The Axiom of Space and Time’): ‘The space-time coordinates are
such particular world parameters for which the energy theorem [(8.3)] is valid.’

Elucidating this result, Hilbert clarified the main point, that these four non-
covariant equations complete the system of fundamental equations of physics:

On account of the same number of equations and of definite potentials, the
causality principle for physical happenings (Geschehen) is also ensured,
and with it is unveiled to us the narrowest connection between the energy
theorem and the principle of causality, in that each conditions the other.
(1915a, 7)

The idea that satisfaction of energy conservation requires four non-covariant condi-
tions is almost certainly taken from Einstein’s Entwurf theory of 1913–1914 (Renn
and Stachel, 1999, 32; 2007, 888). Drawing analogies to Einstein’s difficulties in the
‘hole argument’, Renn and Stachel (1999, 73; 2007, 934) regard Hilbert’s energy
construction as his ‘Proofs argument, based on causality, against general covariance’.
But Hilbert’s rather more complicated construction has, philosophically and moti-
vationally, a different raison d’être.22 We see that in Hilbert’s case, the aim was
to extract a Cauchy-determinate structure within an otherwise generally covariant
theory, and not to abandon general covariance.23 However, the complex mathe-
matical derivation in the Proofs leading to Hilbert’s four energy conditions was
22 Brading and Ryckman (2008), section 7, emphasize the disanalogies of Hilbert’s and

Einstein’s respective treatments of the tension between causality and general covariance.
23 This is also noted by Sauer (2005), n. 5, who writes, ‘Hilbert kept the generally covariant

field equations as fundamental field equations and only postulated a limitation of the physi-
cally admissible coordinate systems.’ Yet Sauer does not make enough of this, we think.
Earlier in his text he writes that Hilbert’s Axiom III is a restriction of the general covariance
of Hilbert’s theory, there seeming to subscribe to the view that Hilbert followed Einstein in
seeking to limit the covariance of his theory.
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cut, together with all of its motivation, from the published version. In the light of the
completed form of Einstein’s theory, placing coordinate restrictions on the energy
term turned out to be the wrong approach for solving the tension between general
covariance and Cauchy determination. Hilbert accordingly dropped it altogether,
modifying and truncating his treatment of energy. There—almost certainly
following the implicitly generally covariant energy in Einstein’s final November
presentation to the Berlin Academy (Einstein, 1915)—Hilbert derived a generally
covariant ‘energy equation,’ which anyway is consonant with the ‘trace’ term in
the gravitational field equations popping out through explicit calculation from their
Lagrangian derivatives.

Nevertheless, the issue of causality in a generally covariant theory does not go
away for Hilbert. We claim that the second note contains his much revised, detailed
reconsideration of this issue, and is rightly understood only in this light.24

8.5 Hilbert’s Second Note

This paper is, we argue, principally concerned with providing a satisfactory
reconciliation between the principles of general invariance and causality. The
impression given by Renn and Stachel is that the second note is a list of special topics
within general relativity. Moreover, they allege that the second note shows Hilbert in
‘agony’ over the ‘collapse of his own research program’ (Renn and Stachel, 1999,
90; 2007, 953). On the contrary, in our opinion, Hilbert deemed his second note to
be its completion.

The treatment of the problem of causality in generally covariant theories here
has four principal facets. First, Hilbert observed that arbitrary point transformations
(diffeomorphisms) do not respect the relation of cause and effect among world points
lying on the same timelike curve. To rectify this, he introduced the notion of proper
coordinate systems, transformations among which always respect the distinction
between spacelike and timelike coordinate axes and can never reverse the tempo-
ral order of cause and effect. Next, he pointed to the consequent need to reformulate
the causality principle within the ‘new physics’ of general invariance, showing that
here the univocal determination of future states from present states requires coordi-
nate restrictions on the initial data in order to locally describe dynamical evolution
off that surface. This is attained by employing a ‘Gaussian’ coordinate system, a
particular type of proper coordinate system. The purchase of univocal determination
in the ‘new physics’ at the cost of adopting special coordinate systems prompted
Hilbert, thirdly, to state a ‘sharper conception’ of the principle of general relativity
(general invariance) underlying this physics. By means of this sharper concep-
tion, he is able to give a clear account of under what conditions a statement of
physics is physically meaningful. Finally, though we shall not discuss it here,25

24 The topic of energy-momentum in general relativity did not go away either. It was the
subject of ongoing discussions between Hilbert, Einstein, and Klein (see Brading, 2005),
and remains a delicate issue; for discussion, see Hoefer (2000).

25 See Brading and Ryckman (2008), section 6.
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Hilbert also took up the related issue of the inconsistency of Euclidean geometry
(permitting, on account of its globally fixed metrical structure, the concept of action
at a distance) with the new physics of fields, which he calls a four-dimensional
pseudo-geometry. To this end, he discussed the conditions under which a pseudo-
Euclidean (Minkowski) metric arises in the new physics, and he rederived the exter-
nal Schwarzschild solution corresponding to the solar gravitational field without the
assumption that the gμv had pseudo-Euclidean values at infinity, that is, that the solar
system is embedded in a pseudo-Euclidean world.

8.5.1 The Problem of Causal Order

On the basis of Axiom II of his first note, and with implicit reference to Einstein’s
requirement of general covariance for the gravitational field equations, all coordinate
systems arising from xs by arbitrary smooth transformations have up to now been
regarded as on an equal footing with one another. However, Hilbert observed that
a conflict with the causal order will arise if two world points lying along the same
timelike curve, and standing in the relation of cause and effect, can be transformed so
that they become simultaneous (i.e., lie on the same data hypersurface). The causal
order concerns our experience of the world in space and time, and thus we have an
apparent conflict between the overriding demand of objectivity expressed by general
covariance and the experienced causal ordering of events.

Although Hilbert speaks (1917, 57) of the need to restrict the arbitrariness of
coordinate systems, his example concerns point transformations (in fact, along one
and the same timelike curve) and the fact that diffeomorphism invariance need not
preserve the relation of causal order among events. If the new physics is to be
compatible with the experienced causal ordering of events, we need to restrict the
allowed coordinate systems such that under transformation this causal ordering is
preserved. To achieve this end, Hilbert introduced what he called ‘proper’ coordinate
systems.

If x4 is designated as the ‘proper’ time coordinate, a ‘proper (eigentlich) coordi-
nate system’ may be defined as one in which the following four inequalities are
satisfied by the components of the metric tensor (numbered (31) in Hilbert,
1915b):

g11 > 0,

∣∣∣∣g11 g12

g21 g22

∣∣∣∣ > 0,

∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣ > 0, g44 < 0. (8.4)

These so-called ‘reality relations’26 implement, in the case of general Riemannian
geometry, the physical requirement of metrical indefiniteness: that three of the
coordinate axes are spacelike, and one timelike. Together, the restrictions imply that
g(= det |gμv|) < 0, so

√−g must replace
√

g in all tensor formulae. A coordinate

26 Pauli (1921), S22 ‘Wirklichkeitsverhältniße’.
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transformation carrying such a proper space-time description into another proper
space-time description is called a proper space-time coordinate transformation.27

The significance of these coordinate conditions for the principle of causality is
then clearly spelled out:

So we see that the concepts of cause and effect lying at the basis of the
principle of causality also in the new physics never leads to inner contra-
diction, as soon as we always take the inequalities [(8.4)] in addition to our
fundamental equations; that is, we restrict ourselves to the use of proper
space-time coordinates.

We observe here (a point we shall return to) that it is not nature but the structure of
our cognitive experience (preservation of causal relations) that leads to the restric-
tion to proper coordinate systems. Coordinate conditions govern possible objects of
experience (for Hilbert, these are physical facts as determined by ‘measure threads’
and ‘light clocks’) represented in causal relation within spatio-temporal empirical
intuition, but not possible objects of physics, governed by the ideal requirement of
general invariance, according to Axiom II.

8.5.2 The Problem of Univocal Determination

We reiterate that the scope of Theorem I extends to any generally invariant four-
dimensional theory, and is thus broader than either general relativity or Hilbert’s
theory itself. While the conflict between general invariance and causal determi-
nation is only implied, via Theorem I, in the published version of Hilbert’s first note
(and accordingly downplayed in the literature), in his second note, Hilbert nonethe-
less claimed that there he had ‘especially stressed’ this fact. One might conjecture
that Hilbert had merely forgotten that explicit reference to the failure of Cauchy
determination for his fundamental equations had been excised from the Proofs, along
with his non-covariant treatment of energy. However, it is more plausible to think
otherwise. Hilbert’s first resolution had been cast in terms of finding ‘four additional
non-invariant equations’, a strategy that had not worked. Then, when revising the
Proofs in the light of Einstein’s published paper of November 25, 1915, it seems he
had not yet seen that a solution lay not in four additional non-invariant equations,
but rather in the coordinate conditions yielding the four inequalities [(8.4)]. Uncer-
tain about how the issue was to be resolved, Hilbert had simply buried the entire
issue in the published version.

The main point of his second paper is to provide a quite different manner
of resolution. Although continuing his interpretation of Theorem I that the four

27 Hilbert’s inequalities [(8.4)] apply only to curves that are spacelike or timelike. But points
on a null curve may be transformed to simultaneity by a coordinate transformation that
is ‘proper’ in the sense that it preserves causal order on all timelike curves. In this case
the ‘reality relations’ will be violated even though the transformation satisfies Hilbert’s
causality principle, and so the inequalities [(8.4)] are merely sufficient, but not necessary,
to preserve causal ordering. See Renn and Stachel (1999), 80; (2007), 941–942.



192 Katherine A. Brading and Thomas A. Ryckman

generalized Maxwell equations [(8.2)] are a consequence of the ten gravitational
equations [(8.1)], this claim lies well in the background, while the matter of causality
takes pride of place. The basic achievement of the paper will be to give the neces-
sary reformulation of the causality principle that is required by the new generally
invariant field physics.

The need for such a reformulation is explicitly stated. Hilbert observes that up
until the present time all physical theories whose laws are written as differential
equations have satisfied the requirement of causality, in the sense of univocal deter-
mination of future states from present states and their time derivatives. As precisely
formulated by Cauchy, causal determination requires that the theory provide an inde-
pendent equation for each unknown function appearing in the theory, a result secured
by ‘the well-known Cauchy theorem on the existence of integrals of partial differen-
tial equations’. However, the situation is different once the requirement of general
invariance is imposed.

Now the fundamental eqs. [(8.1)] and [(8.2)] set up in my first contribution
are, as I there especially stressed, in no way of the above-characterized kind.
Rather, according to Theorem I four are a consequence of the remaining
ones: We viewed the four Maxwell equations [(8.2)] as a consequence of the
ten gravitational equations [(8.1)] and therefore have only the 10 essentially
independent equations [(8.1)] for the 14 potentials gμv and qs.
As soon as we raise the requirement of general invariance for the fundamen-
tal equations of physics, the just mentioned circumstance is essential and
even necessary.28

On the other hand, Hilbert claimed that the situation in the newly emerging
generally invariant physics is such that

from knowledge of physical magnitudes in the present and past, it is no
longer possible to univocally deduce their values in the future.

As a result, Hilbert argued, we are driven to reformulate the causality principle
through ‘a sharper grasp’ of how the general invariance of the new physics should be
understood. The general invariance of the laws, is set as a regulative ideal of physi-
cal objectivity that applies to the conceptual structure of fundamental (field) physics.
There remains the question of how the principle of general invariance should be
understood, not only in the context of laws, but also of individual statements concern-
ing the spatio-temporal evolution of particular systems or objects. Hilbert therefore
revisits the question of what is meant by the meaningfulness of physical statements
once the principle of causality is taken into account. His solution can be elucidated
as follows. A necessary condition for such a statement to be physically meaningful is
that it has a generally covariant formulation. But of course, this is not sufficient. For

28 Hilbert (1917), 60. ‘Essential and necessary’ because the introduction of a Gaussian (and
so, proper) space-time coordinate system for the 10 potentials, gμν(μ, ν = 1, 2, 3); qs(s =
1, 2, 3, 4), would result in overdetermination of the system (more than ten independent
equations), and thus inconsistency.
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when such statements are predictions, i.e., concern the future, Hilbert stipulated that
their meanings are to be understood in such a way that the requirement of physical
causality (viz., that causes precede their effects) is satisfied.

As now regards the principle of causality, the physical quantities and their
time-rates of change may be known at the present time in any given coor-
dinate system; then a statement will have physical meaning only when it is
invariant with respect to all those transformations for which precisely those
coordinates used for the present time remain unchanged. I declare that state-
ments of this kind for the future are all univocally determined, that is, the
causality principle holds in this formulation: From the knowledge of the 14
physical potentials gμν , qs in the present, all statements concerning them for
the future follow necessarily and univocally, in so far as they have physical
meaning. (1917, 61)

Renn and Stachel (1999, 81; 2007, 942) observe that this is obviously not a claim
that physically meaningful statements are independent of the choice of a coordinate
system. But is this passage evidence for what they go on to suggest, that Hilbert
still attaches ‘some residual physical meaning to the choice of coordinates’? In our
opinion, it is apparent from Hilbert’s formulation that the criterion of physical mean-
ingfulness of statements requires satisfaction of the principle of causality in the usual
sense that conditions in the present determine those in the future. Furthermore, any
such physical statement must be independent of how it is designated by coordinates;
i.e., it must be, in Hilbert’s terms, an invariant statement.29

With this new conception of the causality principle in hand, we can formulate the
necessary and sufficient conditions for a proposition to be physically meaningful:

(a) The proposition must have a generally covariant formulation.
(b) When the proposition is expressed with respect to a proper coordinate system,

the truth value of that description must be uniquely determined by an appropriate
spacelike past hypersurface.

In other words, when we express the propositions of physics in terms of possible
objects of experience (that is, including the spatio-temporal and causal aspect of
how we experience objects), those statements are physically meaningful if and only
if they are causally determinate in the sense of condition (b), as well as satisfying
condition (a).

From the new point of view, the physical principle of causality, as ensured
by the coordinate conditions of a well-posed Cauchy problem, is a lingering but

29 These points are made explicitly in Hilbert’s ‘Causality Lecture’ (1916b), 5–6, given the
probable date of November 21, 1916, in Sauer (2001): ‘We will prove that the thus formu-
lated causality principle: ‘All meaningful assertions are a necessary consequence of what
has gone on before (der vorangegangenen)’ is valid.’ Also: ‘That is, one must not only say
that the world laws are independent of reference system, but rather also that any individual
assertion regarding an occurrence or a coincidence (Zusammentreffen) of occurrences only
has a meaning if it is independent of designation, i.e., if it is invariant.’
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not eliminable constraint upon human understanding (‘physical meaningfulness’), a
necessary condition imposed by the mind in structuring experience. Like the sub-
jectivity of the sense qualities, Hilbert viewed the requirement of physical causality
as anthropomorphic, having to do not with the objective world of physics but rather
with our experience of that world.30

8.6 Hilbert’s Revision of Kant in the Light of General
Invariance31

To many neo-Kantians active in the first quarter of the 20th century, the general
theory of relativity showed that Kant’s epistemology was still a work in progress,
neither a refuted nor a finished edifice, and nearly all were prepared to concede, as
did Hilbert, that ‘Kant greatly overestimated the role and the extent of the a priori’
(Hilbert 1930, 961). By the same token, it might be said that Hilbert, through the
axiomatic method, was the first neo-Kantian to put his finger on where exactly the
general theory of relativity required a modification in the traditional Kantian trans-
cendental framework that expressly bound considerations of objectivity together with
conditions of possible experience. In Kant, space and time, as subjective forms
of sensibility, are at once also objective conditions for perception of objects—
conditions of the possibility of experience. For a cognition to be objectively valid
(to be a representation pertaining to a possible object for us, hence to be meaningful)
is for it to invoke our specifically human type of finite, receptive spatio-temporal
sensory intuition of objects.

Hilbert essentially argued that this is no longer the case once the requirement of
general invariance is imposed on fundamental physical theory. While retaining part
of Kant’s linkage of conditions of physical meaningfulness to sensibility, Hilbert
placed general invariance as the superordinate criterion of physical objectivity,
explicitly attributing this development to the influence of Einstein’s gravitational
theory. This is repeatedly affirmed in his lectures, e.g., (1919–1920, 49), and (1921):

Hitherto, the objectification of our view of the processes of nature took place
by emancipation from the subjectivity of human sensations. But a more far
reaching objectification is necessary, to be obtained by emancipating our-
selves from the subjective moments of human intuition with respect to space
and time. This emancipation, which is at the same time the high-point of
scientific objectification, is achieved in Einstein’s theory; it means a radical
elimination of anthropomorphic slag (Schlacke), and leads us to that kind of

30 Hilbert (1919–1920), 85–87, explicitly discusses the problem of causality in the context
of general relativity, concluding (87) that “causality (das Ursächliche) in the narrower
sense [of cause–effect relations] possesses no objective meaning for physics, and that in
the search for causes, considerations of the particular conditions of human perception and
of human purposes are essentially involved.”

31 See Brading and Ryckman (2008) for a more extensive treatment of this topic.
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description of nature which is independent of our senses and intuition and is
directed purely to the goals of objectivity and systematic unity.32

In broad agreement with the cognitive function that the Transcendental Dialectic
assigns to reason, of seeking ever more inclusive ‘systematic unity’, the axiomatic
method elevates the axiom of general invariance as the guiding principle of a
‘description of nature which is independent of our senses and intuition’. In this sense,
the principle of general invariance is neither true nor false, but a regulative idea,

if, in agreement with Kant’s words, we understand by an idea a concept
of reason that transcends all experience and through which the concrete is
completed so as to form a totality.33

Thus, for Hilbert, the axiom of general invariance is the anchor on which the objective
scientific description of nature must now rest, even though such a description goes
beyond the limits of possible experience, which is always finite and whose condi-
tions are set by sensibility (representation in space and time) and the understanding
(causality). By the early 1920s, Hilbert had termed his revised understanding of the
a priori ‘the finite point of view’, taking from Kant the methodology or standpoint
that objective cognition can only be understood as conditioned by a priori structures
of the mind, but refashioning the boundaries of the a priori somewhat differently:

We see therefore: in the Kantian theory of the a priori (Apriori-Theorie)
there is still contained anthropomorphic slag (Schlacke), from which it must
be freed, and after such removal only that a priori point of view (apriorische
Einstellung) is left, which also lies at the foundation of pure mathematical
knowledge: it is essentially that finite point of view characterized by me in
different essays. (Hilbert 1930, 962)

Final Remarks

Before concluding, we offer a brief remark on the alleged ‘priority dispute’ over
the discovery of the generally covariant gravitational field equations. Based on the
account of Hilbert’s aims and methods given here, it is clear that Einstein and Hilbert
were engaged in qualitatively different enterprises that only partially overlapped.
In contrast to Einstein, Hilbert’s goals were at least as much logical and epistemo-
logical as they were physical. We thus concur with the judgment of Felix Klein, who
wrote, in 1921, that ‘there can be no talk of a question of priority, since both authors
pursued entirely different trains of thought (and to be sure, to such an extent that the
compatibility of the results did not at once seem assured).’34

32 Hilbert, 1921, Grundgedanken der Relativitätstheorie, lectures in SS 1921, ed. by Paul
Bernays; as cited and translated in Majer (1995, 146).

33 Hilbert (1925), Engl. trans., 392.
34 Felix Klein (1917), 566, fn 8. ‘Von einer Prioritätsfrage kann dabei keine Rede sein,

weil beide Autoren ganz verschiedene Gedankengänge verfolgen (und zwar so, daß die
Verträglichkeit der Resultate zunächst nicht einmal sicher schien).’ This remark occurs in
a footnote added to the 1921 reprint of Klein (1917).
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In conclusion, we have argued that Hilbert’s two notes on the Foundations of
Physics can be seen as having the common goal of pinpointing, then resolving, the
apparent tension between general covariance and causality, and that his approach to
this issue should be understood within the logical and epistemological context of his
axiomatic method. Adopting general invariance as an axiom while observing, on the
basis of his Theorem I, that the initial value problem was not well posed, Hilbert
even contemplated surrendering causality (in the sense of Cauchy determination).
Yet when he found a way to restore causality in the face of general covariance (essen-
tially by imposing gauge conditions), he subordinated the principle of causality—as
a condition of possible experience—to general covariance, an overriding principle
of physical objectivity. This achievement, along with the results displaying the con-
nections between general covariance and features of electromagnetic theory, were
obtained through application of the axiomatic method. Only in this context can we
understand what Hilbert sought to do, and evaluate his success.
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lopädie der mathematischen Wissenschaften, mit Einschluss ihrer Anwedun-
gen. Leipzig: B.G. Teubner, 539–775. Translated as The Theory of Relativity.
Oxford: Pergamon Press, 1958.

Peckhaus, Volker (1990). Hilbertprogramm und Kritische Philosophie. Göttingen:
Vandenhoeck & Ruprecht.

Renn, Jürgen and Matthias Schemmel (eds.). (2007). The Genesis of General Rela-
tivity, vol. 4. Gravitation in the Twilight of Classical Physics: The Promise of
Mathematics. Dordrecht: Springer.

Renn, Jürgen and John Stachel (1999). Hilbert’s Foundation of Physics: From a
Theory of Everything to a Constituent of General Relativity. Berlin: Max-
Planck-Institut für Wissenschaftsgeschichte, Preprint 118. Reprinted in Renn
and Schemmel (2007), 857–973.

Rowe, David (2001). “Einstein Meets Hilbert: At the Crossroads of Mathematics and
Physics”, Physics in Perspective 3, 379–424.



8 Hilbert’s Axiomatic Method and His “Foundations of Physics” 199

Sauer, Tilman (1999). “The Relativity of Discovery”, Hilbert’s First Note on the
Foundations of Physics”, Archive for History of Exact Sciences 53, 529–75.

——. (2001). “The Relativity of Elaboration: Hilbert’s Second Note on the Founda-
tions of Physics”, ms. dated September 10, 2001.

——. (2005). “Einstein Equations and Hilbert Action: What is Missing on p.8 of
the Proofs for Hilbert’s First Communication on the Foundations of Physics”,
Archive for History of Exact Sciences 59, 577–90.


	8 Hilbert’s Axiomatic Method and His “Foundations of Physics”: Reconciling Causality with the Axiom of General Invariance
	8.1 Introduction
	8.2 The Essential Context: Hilbert’s Axiomatic Method and Kantian Epistemology
	8.2.1 Mie’s Theory and the Axiomatic Method

	8.3 Hilbert’s First Note: WhatWas Hilbert’s Aim?
	8.3.1 Schematic Outline
	8.3.2 The Connection Between Gravitation and Electromagnetism

	8.4 Differences Between the Proofs and the Published Version
	8.4.1 Hilbert’s Target: The ‘Problem of Causality’

	8.5 Hilbert’s Second Note
	8.5.1 The Problem of Causal Order
	8.5.2 The Problem of Univocal Determination

	8.6 Hilbert’s Revision of Kant in the Light of General Invariance31
	Final Remarks

	References


