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1 INTRODUCTION

The term ‘symmetry’ comes with a variety of ancient connotations, including
beauty, harmony, correspondence between parts, balance, equality, proportion,
and regularity. These senses of the term are clearly related to one another; the
concept of symmetry used in modern physics arose out of this family of ideas.
We are familiar with the approximate symmetries of physical objects that we find
around us — the bilateral symmetry of the human face, the rotational symmetry
of a snowflake turned through 60o, and so forth. We may define a symmetry of
a given geometric figure as the invariance of that figure when equal component
parts are exchanged under a specified operation (such as rotation). The devel-
opment of the algebraic concept of a group, in the nineteenth century, allowed a
generalization and refinement of this idea; a precise mathematical notion of sym-
metry emerged which was applicable not just to physical objects and geometrical
figures, but also to mathematical equations — and thus, to what is of particular
interest to us, the laws of physics expressed as mathematical equations. The group
theoretical notion of symmetry is the notion of invariance under a specified group
of transformations. ‘Invariance’ is a mathematical term: something is invariant
when it is left unaltered by a given transformation. This mathematical notion
is used to express the notion of physical symmetry that we are interested in, i.e.
invariance under a group of transformations. This is the concept of symmetry that
has proved so successful in modern science, and the one that will concern us in
what follows.

We begin in Section 2 with the distinction between symmetries of objects and
of laws, and that between symmetry principles and symmetry arguments. This
section includes a discussion of Curie’s principle. Section 3 discusses the impor-
tant connection between symmetries, as studied in physics, and the mathematical
techniques of group theory. We offer a brief history of how group theory was ap-
plied first to geometry and then to physics in the course of the nineteenth century,
preluding to the central importance acquired by group theoretical techniques in
contemporary physics. With these considerations in mind, Section 4 offers an ac-
count of what is meant by symmetry in physics, and a taxonomy of the different
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types of symmetry that are found within physics. In Section 5 we discuss some ap-
plications of symmetries in classical physics, beginning with transformation theory
in classical mechanics, and then turning to Einstein’s Special and General Theories
of Relativity (see Section 6). We focus on the roles and meaning of symmetries in
these theories, and this leads into the discussion of Noether’s theorems in Section
7. Finally, in Section 8, we offer some concluding remarks concerning the place,
role and interpretation of symmetries in classical physics. Note that our emphasis
is resolutely on the classical. For the power and significance of symmetry in quan-
tum physics, we refer the reader to other chapters of this volume, such as Dickson
(ch. 4, Section 3.3), Landsman (ch. 5, Section 4.1), t’Hooft (ch. 7) and Halvorson
(ch. 8, Section 5.2).1

2 SYMMETRIES OF OBJECTS AND OF LAWS

That we must distinguish between symmetries of objects versus symmetries of
laws can be seen as follows. It is one thing to ask about the geometric symmetries
of certain objects — such as the 60o rotational symmetry of a snowflake and the
approximate bilateral symmetry of the human face mentioned above — and the
asymmetries of objects — such as the failure of a chair to be rotationally sym-
metric. It is another thing to ask about the symmetries of the laws governing the
time-evolution of those objects: we can apply the laws of mechanics to the evolu-
tion of our chair, considered as an isolated system, and these laws are rotationally
invariant (they do not pick out a preferred orientation in space) even though the
chair itself is not. Re-phrasing the same point, we should distinguish between
symmetries of states or solutions, versus symmetries of laws. Having distinguished
these two types of symmetry we can, of course, go on to ask about the relationship
between them: see, for example, current discussions of Curie’s principle, referred
to in Section 2.2, below.

2.1 Symmetry principles and symmetry arguments

It is also important to distinguish between symmetry principles and symmetry
arguments. The application of symmetry principles to laws was of central impor-
tance to physics in the twentieth century, as we shall see below in the context
of Eintein’s Special and General Theories of Relativity. Requiring that the laws
— whatever their precise form might be — satisfy certain symmetry properties,
became a central methodological tool of theoretical physicists in the process of
arriving at the detailed form of various laws.

Symmetry arguments, on the other hand, involve drawing specific consequences
with regard to particular phenomena on the basis of their symmetry properties.
This type of use of symmetry has a long history; examples include Anaximander’s
argument for the immobility of the Earth, Archimedes’s equilibrium law for the

1Further discussion can be found in Brading and Castellani [2003].
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balance, and the case of Buridan’s ass.2 In each case the associated argument
can be understood as an example of the application of the Leibnizean Principle of
Sufficient Reason (PSR): if there is no sufficient reason for one thing to happen in-
stead of another, then nothing happens (i.e. the initial situation does not change).
There is something more that the above cases have in common: in each of them
PSR is applied on the grounds that the initial situation has a certain symmetry.3
The symmetry of the initial situation implies the complete equivalence between
the offered alternatives. If the alternatives are completely equivalent, then there
is no sufficient reason for choosing between them and the initial situation remains
unchanged. Arguments of this kind most frequently take the following form: a
situation with a certain symmetry evolves in such a way that, in the absence of an
asymmetric cause, the initial symmetry is preserved. In other words, a breaking
of the initial symmetry cannot happen without a reason: an asymmetry cannot
originate spontaneously. This style of argumentation is also to be found in recent
discussions of ‘Curie’s principle’, the principle to which we now turn.

2.2 Curie’s principle

Pierre Curie (1859-1906) was led to reflect on the question of the relationship
between physical properties and symmetry properties of a physical system by his
studies on the thermal, electric and magnetic properties of crystals, since these
properties were directly related to the structure, and hence the symmetry, of the
crystals studied. More precisely, the question he addressed was the following:
in a given physical medium (for example, a crystalline medium) having specified
symmetry properties, which physical phenomena (for example, which electric and
magnetic phenomena) are allowed to happen? His conclusions, systematically
presented in his 1894 work ‘Sur la symétrie dans les phénomènes physiques’, can
be summarized as follows:4

(a1) When certain causes produce certain effects, the symmetry ele-
ments of the causes must be found in their effects.

(a2) When certain effects show a certain dissymmetry, this dissymme-
try must be found in the causes which gave rise to them.5

(a3) In practice, the converses of these two propositions are not true,
i.e., the effects can be more symmetric than their causes.

2For a discussion of these examples, see [Brading and Castellani, 2003, ch. 1, Section 2.2]).
3In the first case rotational symmetry, in the second and third bilateral symmetry.
4For an English translation of Curie’s paper, see [Curie, 1981]; some aspects of the translation

are misleading.
5Curie uses the term dissymmetry in his paper, as was current at his time. The sense is

the same of that of symmetry breaking in modern terminology, which is today often identified
with the sense of asymmetry. To be more precise one should distinguish between the result of
a symmetry-breaking process (broken symmetry), the absence of one of the possible symmetries
compatible with the situation considered (dissymmetry, as it was called in the nineteenth century
literature, notably by Louis Pasteur in his works on molecular dissymmetry), and the absence of
all the possible symmetries compatible with the situation considered (asymmetry).
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(b) A phenomenon may exist in a medium having the same character-
istic symmetry or the symmetry of a subgroup of its characteristic
symmetry. In other words, certain elements of symmetry can co-
exist with certain phenomena, but they are not necessary. What
is necessary, is that certain elements of symmetry do not exist.
Dissymmetry is what creates the phenomenon.

Conclusion (a1) is what is usually called Curie’s principle in the literature.
Conclusion (a2) is logically equivalent to (a1); the claim is that symmetries are
necessarily transferred from cause to effect, while dissymmetries are not. Con-
clusion (a3) clarifies this claim, emphasizing that since dissymmetries need not be
transferred from cause to effect, the effect may be more symmetric than the cause.6
Conclusion (b) invokes a distinction found in all of Curie’s examples, between the
‘medium’ and the ‘phenomena’. We have a medium with known symmetry proper-
ties, and Curie’s principle concerns the relationship between the phenomena that
can occur in the medium and the symmetry properties — or rather, ‘dissymmetry’
properties — of the medium. Conclusion (b) shows that Curie recognized the im-
portant function played by the concept of dissymmetry — of broken symmetries
in current terminology — in physics.

In order for Curie’s principle to be applicable, various conditions need to be
satisfied: the cause and effect must be well-defined, the causal connection between
them must hold good, and the symmetries of both the cause and the effect must
also be well-defined (this involves both the physical and the geometrical properties
of the physical systems considered). Curie’s principle then furnishes a necessary
condition for given phenomena to happen: only those phenomena can happen that
are compatible with the symmetry conditions stated by the principle. Curie’s prin-
ciple has thus an important methodological function: on the one hand, it furnishes
a kind of selection rule (given an initial situation with a specified symmetry, only
certain phenomena are allowed to happen); on the other hand, it offers a falsifi-
cation criterion for physical theories (a violation of Curie’s principle may indicate
that something is wrong in the physical description).

Such applications of Curie’s principle depend, of course, on our accepting its
truth, and this is something that has been questioned in the literature, especially
in relation to spontaneous symmetry breaking. Different proposals have been of-
fered for justifying the principle. Curie himself seems to have regarded it as a
form of causality principle, and the question in the recent literature has been
whether the principle can be demonstrated from premises that include a definition
of “cause” and “effect”. In this direction it has become current of late to un-
derstand the principle as following from the invariance properties of deterministic
physical laws. The seminal paper for this approach is [Chalmers, 1970], which in-
troduces the formulation of Curie’s principle in terms of the relationship between

6Note that for some authors conclusion (b) is a principle on its own. Radicati (1987) goes
further, describing conclusions (a1), (a2) and (b) as three different principles: Curie’s first, second
and third principle, respectively.
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the symmetries of earlier and later states of a system, and the laws connecting these
states. This “received view” can be criticized for offering a reformulation that is
significantly different from Curie’s intentions (so that the label ‘Curie’s principle’
is a misnomer), and for resting on an assumption that may undermine the interest
and importance of the view, as we discuss in the following brief remarks.7

The received view, by concerning itself with temporally ordered cause and effect
pairs (or states of systems), offers a diachronic or dynamic analysis. In fact, Curie
himself focusses on synchronic or static situations, concerning the compatibility
of different phenomena occurring at the same time, rather than the evolution
of one state of a system into another state. In other words, the ‘cause—effect’
terminology used by Curie is not intended to indicate a temporal ordering of
phenomena being considered. This is clear from his examples, and also from the
fact that discussion of the laws — so central to the diachronic version — is absent
from Curie’s own analysis. That the diachronic version has come to have the
label ‘Curie’s principle’ therefore misrepresents Curie’s original principle and his
discussion of that principle.

Is the diachronic version interesting and important, nevertheless? The account
can be understood as an application of PSR in which we pay careful attention
to whether the laws provide a “sufficient reason” for a symmetry to be broken
as a system evolves from its initial to final state by means of those laws. The
reformulation of the diachronic version by Earman [2004] has the strong merit of
being precise, and thereby enabling a proof that if the initial state possesses a given
symmetry, and the laws deterministically preserve that symmetry, then the final
state will also possess that symmetry. However, things are not so simple as they
might seem because the proof takes a state with a given symmetry. Specifying the
symmetries of a state requires, in general, recourse to a background structure —
such as space or spacetime, or the space of solutions. In some cases, the required
structure may seem trivial or minimal, but nevertheless the dynamics of the system
will not be independent of this structure (consider the examples of the spatial or
spatiotemporal structure or, more strongly still, the space of solutions). This has
the consequence that, in general, the structures on which the symmetries of a state
and the symmetries of the dynamics depend are not independent of one another,
and any appearance to the contrary in the “proof” needs to be handled with
caution. Indeed, we think that answering the question of whether the diachronic
version is interesting and important depends in part upon investigating this lack
of independence and the role it plays in the proof, something which has yet to be
provided in the literature on the diachronic version of ‘Curie’s principle’.

Both Curie’s original version of his principle, and the diachronic version, begin
with the symmetries of states of physical systems. In contemporary physics, focus
has shifted to symmetries of laws, and the significant connection between symme-
tries of physical systems and symmetries of laws has to do not with symmetries

7For detailed discussion see [Brading and Castellani, 2006]. The “received view” that we
attribute first to Chalmers is developed in [Ismael, 1997] and [Earman, 2004]. See also [Earman,
this vol., ch. 14, Section 2.3].



1336 Katherine Brading and Elena Castellani

of states of those systems, but with symmetries of ensembles of solutions.8 The
symmetries of a dynamical equation are not, in general, the symmetries of the
individual solutions (let alone states), but rather the symmetries of the whole set
of solutions, in the sense that a symmetry of a dynamical equation transforms a
given solution into another solution. Considering this relationship between laws
and solutions leads to an alternative version of Curie’s principle, which we propose
here.9 As with the diachronic version of Curie’s principle, our proposal departs
from Curie’s original proposal, but our contention is that it remains true to the
main motivation behind Curie’s original investigation. In this version we seek to
unite two things:

1. We understand Curie’s motivating question to be ‘which phenomena are
physically possible?’, and his suggestion to be that we can use symmetries
as a guide towards answering this question; and

2. We go beyond Curie in making use of symmetries of laws, something about
which he said nothing, but which has become a central concern in contem-
porary physics.

Combining these two ingredients, a “modern” version of Curie’s principle would
then simply state that the symmetries of the law (equation) are to be found in
the ensemble of its solutions. This version expresses Curie’s basic idea — that
“symmetry does not get lost (without a reason)” — in virtue of the fact that
the symmetry of the law is to be found in the ensemble of solutions. The fact
that this is how we define the relationship between symmetries and laws does not
render it empty of significance with respect to Curie’s motivating question. On the
contrary, the point is that we can use the symmetries of the law as a guide to finding
solutions, i.e. to determining which phenomena are physically possible, when not
all the solutions are known. We can ask, following Curie, ‘What phenomena are
possible?’, and we can use the connection between the symmetries of the law and
the symmetries of the ensemble of solutions as a guide to finding the physically
possible phenomena. Thus, what is on the one hand a definitional statement
(that the symmetries of the law (equation) are to be found in the ensemble of the
solutions) comes on the other hand to have epistemic bite when we don’t know all
the solutions. This, we believe, is true to Curie’s motivating question, as expressed
in item (1), above.

8By “solution” here we mean a temporally extended history of a system, the “state” of a
system being a “solution at an instant”.

9Notice that this version does not involve the temporal evolution from cause to effect (as in
the diachronic version), nor is it restricted to a state of a system at a given instant or during
a certain temporal period (as in the sychronic version); rather, it concerns the structure of an
ensemble of solutions, considered as a whole.
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3 SYMMETRY AND GROUP THEORY: EARLY HISTORY

Group theory is the powerful mathematical tool by means of which the symmetry
properties of theories are studied. In this section, we begin with the definition
of a group, and outline the origins of this notion in the mathematics of algebraic
equations. We then turn our attention to the manner in which group theory
was applied first to geometry and then to physics in the course of the nineteenth
century.

3.1 The introduction of the group concept and the first developments
of group theory

A group is a family G of elements g1, g2, g3... for which there is defined a multipli-
cation that assigns to every two elements gi and gj of the group a third element
(their product) gk = gigj ∈ G, in such a way that the following requirements
hold:10

• (gigj)gk = gi(gjgk) for all gi, gj , gk ∈ G (associativity of the product);

• there exists an identity element e ∈ G such that gie = egi for all gi ∈ G;

• for all gi ∈ G there exists an inverse element g−1
i ∈ G such that gig

−1
i =

g−1
i gi = e.

The concept of a group was introduced by Évariste Galois in the short time
he was able to contribute to mathematics (born in 1811, he died as a result of
a duel in 1832) in connection with the question of the resolution of equations by
radicals.11 The resolvent formulas for cubic and quartic equations were found
by the mathematicians of the Renaissance,12 while the existence of a formula for
solving the general equations of the fifth and higher degrees by radicals remained an
open question for a long time, stimulating developments in algebra. In particular,
the studies of the second half of the eighteenth century focussed on the role played
in the solution of equations by functions invariant under permutation of the roots,
so giving rise to the theory of permutations. In J. L. Lagrange’s Réflexions sur
la résolution algébrique des équations, the most influential text on the subject,
some fundamental results of permutation theory were obtained.13 Lagrange’s text

10The concept of a group can be weakened by relaxing these conditions (for example, dropping
the inverse requirement leads to the concept of a monoid, and retaining only associativity leads
to the concept of a semigroup). The question that then arises is whether the full group structure,
or some weaker structure, is related to the symmetry properties of a given theory.

11That is, in terms of a finite number of algebraic operations — addition, subtraction, multi-
plication, division, raising to a power and extracting roots — on the coefficients of the equations

12The resolvent formula for a quadratic equation was known since Babylonian times. A his-
torical survey on the question of the existence of resolvent formulas for algebraic equations is in
[Yaglom, 1988, 3 f.].

13Among other results, the so-called Lagrange’s theorem which states — in modern terminology
— that the order of a subgroup of a finite group is a divisor of the order of the group.
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served as a basis for successive algebraic developments, from P. Ruffini’s first proof
in 1799 of the impossibility of solving nth degree equations in radicals for n ≥ 5,
to the seminal works by A. L. Cauchy, N. H. Abel, and finally Galois.14

Galois’s works15 marked a turning point, providing answers to the open ques-
tions in the solutions of equations by using new methods and algebraic notions,
first of all the notion of a group. This notion was introduced by Galois in relation
to the properties of the set of permutations of the roots of equations (the permu-
tations constituting what he named a ‘group’), together with other basic notions
of group theory such as “subgroup”, “normal subgroup”, and “simple group”.16
By characterizing an equation in terms of its “degree of symmetry”, determined
by the permutation group of the roots preserving their algebraic relations (later
known as the Galois group of the equation), Galois could transform the problem of
the resolution of equations into that of studying the properties of the permutation
groups involved. In this way he obtained, among other things, the necessary and
sufficient conditions for solving equations by radicals.

Galois’s achievements in group theory, first brought to publication by Joseph
Liouville in 1846, were collected and expanded in Camille Jordan’s 1870 Traité des
substitutions et des équations algébriques. Jordan’s Treatise, the first systematic
textbook on group theory, had a decisive influence on the application of this new
theory, including its application to other domains of mathematical science, such
as geometry and mathematical physics.

3.2 Applications of group theory: the contributions of Klein and Lie

Projective geometry, the theory of invariants and group theory: Klein and Lie’s
starting point

In the same year as the appearance of Jordan’s Treatise, Sophus Lie and Felix
Klein, two young mathematicians who were to become the key figures in extending
the domain of application of group theory, moved for a period from Berlin to Paris
to enter into contact with the French school of mathematics. Lie and Klein had
just written a joint paper investigating the properties of some curves in terms
of the groups of projective transformations leaving them invariant. In fact they
were drawn to Paris mostly by their interest in projective geometry, the science
founded by J. V. Poncelet to study the properties of figures preserved under central
projections. Projective geometry had become, at the time, a particularly fruitful
research field for the combination of algebraic and geometrical methods based on
the notion of invariance. The theory of invariants was itself a flourishing branch

14Cauchy (1789—1857) generalized Ruffini’s results in 1815; Abel (1802—1829) published in
1824 a proof of the impossibility of solving the quintic equation by radicals and in 1826 the paper
Démonstrations de l’impossibilité de la résolution algébrique des équations générales qui passent
le quatrième degré.

15A few “m’emoires” submitted to the Académie des Sciences, three brief papers published in
1830 in the Académie’s ‘Bulletin’, and some letters, among which is the last one written to his
friend Auguste Chevalier in the night before the fatal duel.

16See [Yaglom, 1988, 9 f.], for details.
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of mathematics, centered on the systematic study of the invariants of “algebraic
forms”. Using the theory of invariants, the English algebraist Arthur Cayley17

had recently clarified the relationship between Euclidean and projective geometry,
showing the former to be a special case of the latter. Before leaving for France,
Klein had tried to extend Cayley’s results, based on the possibility of defining a
distance (a “metric”) in terms of a quadratic form defined on the projective space,
to the case of non-Euclidean geometries.

While in Paris Lie and Klein became acquainted not only with Jordan, but also
with the expert in differential geometry Gaston Darboux, who stimulated their
interest in the relations between differential geometry and projective geometry.

Klein’s Erlangen Program

The question of the relations between the different contemporary geometrical sys-
tems particularly interested Klein. He aimed at obtaining a unifying foundational
principle for the various branches into which geometry had apparently recently
separated. In this respect, he fruitfully combined (a) the application of the the-
ory of invariants to the study of geometrical properties, with (b) his and Lie’s
idea of applying algebraic group theory to treating also geometrical transforma-
tions. The new group theoretical conception of a geometrical theory which resulted
was announced in his famous Erlangen Program, as it became known following
the inaugural lecture entitled ‘Comparative Considerations on Recent Geometri-
cal Research’18 that the 23-year-old Klein delivered when entering, in 1872, as a
professor on the staff of the University of Erlangen. Guided by the idea that geom-
etry is in the end a unity, Klein’s solution to the problem posed by the existence
of different geometries was to propose a general characterization of a geometrical
theory by using the notion of invariance under a transformation group (i.e., the
notion of symmetry). According to his characterization a geometry is defined,
with respect to a given domain (the plane, the space, or a given “manifold”) and a
group of transformations acting on it, as the science studying the invariants under
the transformations of the group. Each specific geometry is thus determined by
the characterizing symmetry group (for example, planar Euclidean geometry is
determined by the group of affine transformations acting on the plane), and the
interrelations between geometries can be described by the relations between the
corresponding groups (for example, the equivalence of two geometries amounts to
the isomorphism between the corresponding groups).

With Klein’s definition of a geometry, geometrical and symmetrical properties
become very close: the symmetry of a figure, which is defined in a given “space”19

the “geometrical” properties of which are preserved by the transformations of a
group G, is determined by the subgroup of G leaving the figure invariant. The new

17Cayley was one of the three members of the ‘invariant trio’, as the French mathematician
Hermite dubbed them, the other two being James Sylvester, inventor of most of the terminology
of the theory including the word ‘invariant’, and George Salmon.

18‘Vergleichende Betrachtungen über neuere geometrische Vorschungen’.
19A set of points endowed with a structure.
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group theoretical techniques prompted a transition from an inductive approach
(familiar from the nineteenth century classifications of crystalline forms in terms
of their visible — and striking — symmetry properties)20 to a more abstract and
deductive approach. This is the procedure formulated in Weyl’s classic book on
symmetry (Symmetry, [1952]) as follows:

Whenever you have to do with a structure-endowed entity Σ try to
determine its group of automorphisms, the group of those element-
wise transformations which leave all structural relations undisturbed.
[...] After that you may start to investigate symmetric configurations
of elements, i.e. configurations which are invariant under a certain
subgroup of the group of all automorphisms [Weyl, 1952, 144, emphasis
in original].

In this way, the symmetry classifications could be extended to figures in “spaces”
different from the plane and space of common experience.

Klein himself contributed to the classification of symmetry groups of figures
with his works on discrete groups; in particular, he studied the transformation
groups related to the symmetry properties of regular polyhedra, which proved to
be useful in the solution of algebraic equations by radicals.

Lie’s theory of continuous groups

After 1872, while Klein was concerned especially with discrete transformation
groups, Lie devoted all his research work to building the theory of continuous
transformation groups, the results of which were systematically collected in his
three-volume Theorie der Transformationsgruppen [I: 1888, II: 1890, and III: 1893],
written with the collaboration of F. Engel. Lie’s interest in continuous groups arose
in relation to the theory of differential equations, which he took to be ‘the most
important discipline in modern mathematics’. By the time he was in Paris, Lie
had begun to study the theory of first-order partial differential equations, a theory
of particular interest because of the central role it played in the formulation given
by W. R. Hamilton and C. G. Jacobi to mechanics.21 His project was to extend to
the case of differential equations Galois’s method for solving algebraic equations:
that is, using the knowledge of the ‘Galois group’ of an equation (the symmetry
group formed by the transformations taking solutions into solutions) so as to solve
it or reduce it to a simpler equation. Thus Lie’s guiding idea was that continuous
transformation groups could, in the solution of differential equations, play a role
analogous to that of the permutation groups used by Galois in the case of algebraic
equations.

20A classic textbook in this respect is [Shubnikov and Koptsik, 1974]. See also Section 8,
below.

21For details on classical mechanics we refer the reader to [Butterfield, this vol., ch. 1] and the
references therein.



Symmetries and Invariances in Classical Physics 1341

Lie had already considered continuous groups of transformations in some earlier
geometrical works. In his studies with Klein on special kinds of curves (called by
them ‘W-curves’), he had examined transformations that were continuously related
in the sense that they were all generated by repeating an infinitesimal transfor-
mation.22 The relevance of infinitesimal transformations to continuous groups of
transformations was to become a central point in his studies of contact transfor-
mations, so called because they preserved the contact or tangency of surfaces.
Lie had started to investigate contact transformations in association with geo-
metrical reciprocities implied in his “line-to-sphere mapping”, a mapping between
a line geometry and a sphere geometry that he had discovered while in Paris.23
When he turned to considering first-order partial differential equations, he soon
realized that they admitted contact transformations as symmetry transformations
(i.e. transformations taking solutions into solutions). Thus contact transforma-
tions could form the “Galois group” of first-order partial differential equations.
This motivated him to develop the invariant theory of contact transformations,
which represented the first step of his general theory of continuous groups.

Lie’s crucial result, allowing him to pursue his program, was the discovery that
to each continuous transformation group could be assigned what is today called its
Lie algebra. Lie showed that the infinitesimal generators of a continuous transfor-
mation group obey a linearized version of the group law, involving the commutator
bracket (or Lie bracket); this linearized law then represents the structure of the
algebra. In short (and in modern terminology): we describe the elements (transfor-
mations) of a continuous group (now called a Lie group)24 as functions of a certain
number r of continuous parameters al (l = 1, 2, ...r). And these group elements
can be written in terms of a corresponding number r of infinitesimal operators Xl,
the generators of the group, which satisfy the “multiplication law” represented by
the Lie brackets

[Xs,Xt] = cq
stXq ,

so forming what is called the Lie algebra of the group. The coefficients cq
st are

constants characterizing the structure of the group and are called the structure
constants of the group.25

Thanks to this sort of result, the study and classification of continuous groups
could be conducted in terms of the corresponding Lie algebras. This proved to be
extremely fruitful in the successive developments, not only algebraic and geomet-
rical, but also physical. With regard first of all to the physics of Lie’s time, Lie
had arrived at the correspondence between continuous groups and Lie algebras by
reinterpreting, in the light of his program for solving differential equations, the

22See on this part [Hawkins, 2000, Section 1.2]. According to Hawkins (p. 15), with the works
of Lie and Klein on W-curves ‘for the first time not only is a continuous group the starting
point for an investigation, but also for the first time in print we have the idea that infinitesimal
transformations are a characteristic and useful feature of continuous systems of transformations’.

23See [Hawkins, 2000, Section 1.4].
24For a precise definition of this and other terms in this paragraph, see [Butterfield, this vol.,

ch. 1, Section 3].
25For more details, see [Butterfield, this vol., ch. 1, Sections 3.2 and 3.4].
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results obtained by Poisson and especially Jacobi about the integration of first-
order partial differential equations arising in mechanics.26 His achievements were
thus of great relevance to the solution of the dynamical problems discussed by his
contemporaries.

But it is in twentieth century physics, with the works of such figures as Hermann
Weyl, Emmy Noether and Eugene Wigner (just to recall the central figures who
first contributed to the applications of Lie’s theory to modern physics), that the
theory of Lie groups and Lie algebras acquired a fundamental role in the description
of physical phenomena. Today, the applications of the theory that originated from
Lie’s works include the whole of theoretical physics, of both the large and the
small: classical and quantum mechanics, relativity theories, quantum field theory,
and string theory.27

4 WHAT ARE SYMMETRIES IN PHYSICS? DEFINITIONS AND
VARIETIES

4.1 What is meant by ‘symmetry’ in physics

We can understand intuitively the generalization of the scientific notion of sym-
metry from physical or geometric objects to laws, as follows. We write down our
law as a mathematical equation, and appearing in this equation will be various
mathematical objects and operators. For a particular group of transformations,
these objects and operators transform according to rules that may be fixed either
by the mathematical nature of the object or operator concerned, or (where the
mathematics does not fix the transformation rules) by our specification. If the
“form” of the equation is preserved when we transform each of the objects and
operators appearing in our equation by any element of the group, then we say that
the group is a symmetry group of the equation.

More precisely, what we mean by the symmetry transformations of the laws in
physics can be formulated in either of the following ways, which are equivalent in
the sense that they pick out the same set of transformations:

(1) Transformations, applied to the independent and dependent variables of the
theory in question, that leave the form of the laws unchanged.

(2) Transformations that map solutions into solutions.

Symmetry transformations may be viewed either actively or passively. From the
passive point of view we re-describe the same physical evolution in two different
coordinate systems.28 That is, we transform the independent and dependent vari-
ables, as in (1). If the description in the original set of coordinates is a solution

26For details see [Hawkins, 2000, Section 2.5].
27In this volume, see especially t’Hooft (ch. 7), Dickson (ch. 4), and Belot (ch. 2).
28By ‘coordinates’ here we are referring to generalized coordinates; in general, one coordinate

for each degree of freedom of the system.
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of given equations, then the new description in the new set of coordinates is a
solution of the same equations. (If the transformation is not a symmetry transfor-
mation, then the new description in the new coordinates will not, in general, be a
solution of the same equations, but rather of different equations.) The mapping of
one solution into another solution of the same equations, by means of a symmetry
transformation, leads to the active interpretation of such transformations. On this
interpretation, the two solutions are viewed as different physical evolutions de-
scribed in the same coordinate system. Thus, formulation (2) lends itself naturally
to an active interpretation.

The ‘form of the law’ in (1) means the functional form of the law, expressed
in terms of the independent and dependent variables. A transformation of those
variables will, in general, lead to an expression whose functional form differs from
that of the original expression (x goes to x2, for example). At this point it will be
helpful to say a few words about “invariance” and “covariance”. Let the reader
beware that there is no unanimity over how these terms are used in discussing
the laws of physics, especially in the philosophy of physics literature. Often, the
term ‘invariant’ is reserved for objects, and ‘covariant’ is used for equations or
laws. However, this is a product of a more fundamental distinction, which when
understood correctly allows for the application of the notion of invariance to laws
as well.

We think that the discussion of Ohanian and Ruffini [1994, Section 7.1] is very
useful, and that it nicely distils much of the best of what can be found in the liter-
ature, both in physics and in philosophy of physics. The upshot is as follows. We
may say that an equation is covariant under a given transformation when its form
is left unchanged by that transformation. This is the notion at work in Definition
1. In a way, it is rather weak: given an equation that is not covariant under a given
transformation, we can always re-write it so that it becomes covariant. On the
other hand, this re-writing may involve the introduction of new functions of the
variables, and it is the physical interpretation of these new quantities that allows
covariance to gain physical significance. We will have more to say about this for
the specific case of general covariance and Einstein’s General Theory of Relativity
in Section 6.3 below.

Invariance of an equation, as characterized by Ohanian and Ruffini, is a stronger
requirement than covariance. Not only should the form of the equation remain
the same, but so too should the values of any non-dynamical quantities, including
“constants” such as the speed of light. By “non-dynamical quantities” we mean
all those objects which appear in the equations yet which do not themselves sat-
isfy equations of motion. We here enter the muddy waters of how to distinguish
between “absolute” and “dynamical” objects, as discussed by Anderson [1967].29

In both cases (covariance and invariance), the associated transformations —
when actively construed — take solutions into solutions. When using formulation

29See also Section 6.3, below. One difficulty in tackling the literature on this issue is the variety
of uses and meanings attaching to the common terminology of covariance, principle of covariance,
invariance, absolute and dynamical objects, and so forth.
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(2), it is important to be clear about what is meant by a solution. This does not
mean a solution-at-an-instant, i.e. an instantaneous state of a system; rather, it
means an entire history, i.e. possible time-evolution, of the system in question.30

4.2 Varieties of symmetry

Symmetries in physics come in a number of different varieties, distinguished by
such terms as ‘global’ and ‘local’; ‘internal’ and ‘external’; ‘continuous’ and ‘dis-
crete’. In this Section we briefly review this terminology and the associated dis-
tinctions.

The most familiar are the global spacetime symmetries, such as the Galilean
invariance of Newtonian mechanics, and the Lorentz invariance of the Special The-
ory of Relativity. Global spacetime symmetries are intended to be valid for all the
laws of nature, for all the processes that unfold in the spacetime. Symmetries with
this universal character were labelled ‘geometric’ by Wigner (see [1967, especially
p. 17]).

This universal character is not shared by some of the symmetries introduced into
physics during the twentieth century. Most of these were of an entirely new kind,
with no roots in the history of science, and in some cases expressly introduced to
describe specific forms of interactions — whence the name ‘dynamical symmetries’
due to Wigner [1967, see especially pp. 15, 17—18, 22—27, 33]).

The various symmetries of modern physics can also be classified according to a
second distinction: that between global and local symmetries. The terms ‘global’
and ‘local’ are used in physics, and in philosophy of physics, with a variety of mean-
ings. The distinction intended here is between symmetries that depend on constant
parameters (global symmetries) and symmetries that depend on arbitrary smooth
functions of space and time (local symmetries). While Lorentz invariance is an
example of a global symmetry, the gauge symmetry of classical electromagnetism
(an internal symmetry)31 and the diffeomorphism invariance in General Relativity
(a spacetime symmetry) are examples of local symmetries, since they are parame-
terized by arbitrary functions of space and time.32 Recalling Wigner’s distinction,
Lorentz invariance is a geometric symmetry, applying to all interactions, whereas
the gauge symmetry of electromagnetism concerns the electromagnetic interaction
specifically and is therefore a dynamical symmetry.

The gauge symmetry of classical electromagnetism is an internal symmetry
because the transformations of the vector potential occur in the internal space
of the field system, rather than in spacetime. The gauge symmetry of classical
electromagnetism can seem to be no more than a mathematical curiosity, specific
to this theory; but with the advent of quantum theory the use of internal degrees

30The distinction is important in, for example, our discussion of Curie’s principle, Section 2.2
above.

31For more on gauge and internal symmetries, see the following paragraph.
32We discuss the local symmetry of General Relativity further in Section 6.1 below. See also

[Belot, this vol., ch. 2].
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of freedom, and the related internal symmetries, became fundamental.33

The translations, rotations and boosts of the inhomogeneous Lorentz group are
all examples of continuous symmetries, for which any finite symmetry transforma-
tion can be built up of infinitesimal symmetry transformations. In contrast with
the continuous symmetries we have the discrete symmetries of charge conjugation,
parity, and time reversal (CPT), along with permutation invariance. Thus, Newto-
nian mechanics and classical electrodynamics are invariant under parity (left-right
inversion) and under time reversal (roughly: the laws hold for a sequence of states
evolved in the backwards time direction just as they hold for the states ordered in
the forwards direction). Classical electrodynamics is also invariant under charge
conjugation, so long as we correctly implement the associated transformations of
the electric and magnetic fields. Finally, there is a sense in which classical sta-
tistical mechanics is permutation invariant: the particles postulated are identical
to one another, and their permutation takes a solution into a solution. However,
the power and significance of the discrete symmetries achieves its full force only
in quantum theory.

In Section 8 below, we discuss some of the interpretative issues associated with
these different varieties of symmetry in classical physics.

5 SOME APPLICATIONS OF SYMMETRIES IN CLASSICAL PHYSICS

5.1 Transformation theory in classical mechanics

As we have seen, Lie’s interest in continuous groups arose in relation to his studies
of the theory of first-order partial differential equations, which played a central role
in the formulation given by Hamilton and Jacobi to mechanics. The transformation
theory of mechanics based on this formulation is indeed one of the first examples
of a systematic exploitation in physics of the invariance properties of dynamical
equations. These symmetries are exploited according to the following strategy: the
integration of the equations of motion is simplified by transforming — by means of
symmetry transformations — the original dynamical system into another system
with fewer degrees of freedom.

Historically, the road to the possibility of applying the above ‘transformation
strategy’ to solving dynamical problems was opened by the works of J. L. La-
grange and L. Euler. The Euler-Lagrange analytical formulation of mechanics,
grounded in the seminal Mécanique Analytique [1788] of Lagrange, expressed the
laws of motion in a form which was covariant (cf. Section 4.1) under all coor-
dinate transformations. This meant one could more easily choose coordinates to
suit the dynamical problem concerned. In particular, one hoped to find a coor-

33For interpretative issues associated with gauge symmetry in classical electromagnetism, see
Belot [1998]. Gauge symmetries came to prominence with the development of quantum theory.
The term ‘gauge symmetry’ itself stems from Weyl’s 1918 theory of gravitation and electromag-
netism. For discussions of all these aspects of gauge symmetry, see [Brading and Castellani,
2003].
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dinate system containing “cyclic” (a.k.a. “ignorable”) coordinates. The presence
of ignorable coordinates amounts to a partial integration of the equations: if all
the coordinates are ignorable, the problem is completely and trivially solved. The
method was thus to try to find (by applying coordinate transformations leaving the
dynamics unchanged) more and more ignorable variables, thus transforming the
problem of integrating the equations of motion into a problem of finding suitable
coordinate transformations.

The successive developments in the analytical approach to mechanics, from
Hamilton’s “canonical equations of motion” to the general transformation theory
of these equations (the theory of canonical transformations) obtained by Jacobi,
presented many advantages of the “transformation strategy” point of view. For
further details we refer the reader to Butterfield’s chapter of this volume, along
with classic references such as Lanczos [1949; 1962] and Whittaker [1904; 1989].
Butterfield [this vol., ch. 1], by expounding the theory of symplectic reduction in
classical mechanics, thoroughly illustrates the strategy of simplifying a mechanical
problem by exploiting a symmetry. This strategy is also the main subject of But-
terfield [2006], focussing on how symmetries yield conserved quantities according
to Noether’s first theorem (see Section 7, below), and thereby reduce the number
of variables that need to be considered in solving a problem.

We end these brief remarks on symmetry and transformation theory in classical
mechanics by emphasizing two points.

First, we note that a problem-solving strategy according to which a dynamical
problem (equation) is transformed into another equivalent problem (equation) by
means of a symmetry might be seen as an example of the application of Curie’s
principle in its modern version (see here Section 2.2): by transforming an equation
into another equivalent equation using a specific symmetry we may arrive at an
equation which we can solve; the solution of the new equation is related to the
unknown solution of the old equation by the specific symmetry; that is, we thereby
arrive at an equivalent solution.

Second, we emphasize that in all these developments the invariance properties
of the dynamical equations, though undoubtedly important, were considered ex-
clusively in an instrumental way. That is, canonical transformations were studied
only for the purpose of solving the dynamical problem at hand. The equations
were given, and their invariance properties were investigated to help find their
solutions. The formulation of Einstein’s Special Theory of Relativity at the begin-
ning of the twentieth century brings an inversion of this way of thinking about the
relationship between symmetries and physical laws, as we shall see in the following
section.

5.2 Symmetry principles as guides to theory construction

The principle of relativity, as expressed by Einstein in his 1905 paper announcing
the Special Theory of Relativity, asserts that

The laws by which the states of physical systems undergo changes are
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independent of whether these changes are referred to one or the other
of two coordinate systems moving relatively to each other in uniform
motion.34

It further turns out that these coordinate systems are to be inertial coordinate
systems, related to one another by the Lorentz transformations comprising the
inhomogeneous Lorentz group.

The principle of relativity thus stated meets the conditions listed above in Sec-
tion 1 for a symmetry principle:

• The Lorentz transformations, applied to the independent and dependent
variables of the theory, leave the form of the laws as stated in one inertial
system unchanged on transformation to another inertial coordinate system.

• The Lorentz transformations map a solution, given relative to an inertial
coordinate system, into another solution.

This principle was explicitly used by Einstein as a guide to theory construction:
it is a principle that must be satisfied whatever the final details of the theory.35
Indeed, using just the principle of relativity and the light postulate, Einstein de-
rives various results, including the Lorentz transformations. As noted above, this
represents a reversal in the priority that, since the time of Newton, had been given
to the relativity principle versus the dynamical laws. Huygens used the relativ-
ity principle as a basic postulate from which to derive dynamical results, but in
Newton the relativity principle, initially presented in his manuscripts as an inde-
pendent postulate, is relegated in the Principia to a corollary.36 From then until
Einstein, the relativity of inertial motion is seen as a consequence of the particular
laws under consideration, and something that could turn out to be false once the
details of the laws of some particular interaction are known. Similarly for classical
physics in general, symmetries — such as spatial translations and rotations —
were viewed as properties of the laws that hold as a consequence of those par-
ticular laws. With Einstein that changed: symmetries could be postulated prior
to details of the laws being known, and used to place restrictions on what laws
might be postulated. Thus, symmetries acquired a new status, being postulated
independently of the details of the laws, and as a result having strong heuristic
power. As Wigner wrote, Einstein’s papers on special relativity ‘mark the reversal
of a trend’: after Einstein’s works, ‘it is now natural to try to derive the laws of
nature and to test their validity by means of the laws of invariance, rather than
to derive the laws of invariance from what we believe to be the laws of nature’
[Wigner, 1967, 5].

34Miller’s [1981] translation, p. 395.
35For discussion of the principle/constructive theory distinction in Einstein, see [Brown, 2006,

ch. 6] and [Howard, 2007].
36In fact, it does not follow from Newton’s three laws of motion — we must further assume

the velocity independence of mass and force. See [Barbour, 1989, Section 1.2].
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The methodology that had served Einstein well with the Special Theory of Rel-
ativity (STR) also had a role in his development of the General Theory (GTR), for
which he used various different principles as restrictions on the possible form that
the eventual theory might take.37 One of these was, so Einstein maintained, an
extension of the principle of relativity found in STR to include coordinate systems
that are in accelerated motion relative to one another, implemented by means of
the requirement that the equations of his new theory be generally covariant. Ein-
stein was seeking a “Machian” solution to the challenge of Newton’s bucket, which
he took to require that there be no preferred reference frames. Thus, in his 1916
review article Einstein wrote that ‘The laws of physics must be of such a nature
that they apply to systems of reference in any kind of motion. Along this road we
arrive at an extension of the postulate of relativity’ (emphasis in original).

The questions of whether or not the principle of general covariance (a) makes
any arbitrary smooth coordinate transformation into a symmetry transformation,
and (b) is a generalization of the principle of relativity, have been much discussed.
The answer to (b) is a definitive ‘no’, but there is less consensus at present about
the answer to (a).38 In the following section we take up discussion of (a). Here we
close with a few brief remarks concerning (b).

Even if general covariance in GTR is a symmetry principle, it is not an extension
of the relativity principle. That is to say, general covariance says nothing about
the observational equivalence of distinct reference frames.39 As already noted, the
thought that general covariance might provide such a principle was, for Einstein,
connected with his attempts to provide a “Machian” resolution to the challenge
of Newton’s bucket, and with his principle of equivalence. However, the principle
of equivalence does not imply the observational equivalence of reference frames
in arbitrary states of motion (Einstein never thought that it did), and Einstein
eventually realized that GTR does not vindicate a solution to Newton’s bucket
that depends only on the relative motion of matter.40

Whatever the subtleties of whether, and to what extent, general covariance is a
symmetry principle, it is clear that it had enormous heuristic power, not just for
Einstein in his development of GTR, but also beyond. Think for example Hilbert’s
work on the axiomatization of physics (see [Corry, 2004], and references therein),
and Weyl’s attempts to construct a unified field theory (see [O’Raifeartaigh, 1997],
for an English translation of Weyl’s 1918 paper ‘Gravitation and Electricity’, and
see also [Weyl, 1922]). In all these cases, general covariance provided a power-
ful tool for theory construction. In the following Section we discuss further the

37Primarily the following: the principle of relativity, later (in 1918) distinguished from what
Einstein referred to as ‘Mach’s principle’; the principle of equivalence; and the principle of
conservation of energy–momentum.

38See for example [Torretti, 1983, 152–4]; Norton [1993], who also discusses the relationship
with the principle of equivalence; Anderson [1967].

39For further discussion see, for example, [Norton, 1993] and [Torretti, 1983, Section 5.5].
40For a clear and concise discussion, see [Janssen, 2005].
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significance and interpretation of general covariance in GTR.41

6 GENERAL COVARIANCE IN GENERAL RELATIVITY

In the preceding Section we noted the role of the principle of general covariance as a
guide to theory construction. In this Section we turn our attention to a number of
further issues relating to general covariance in GTR that have received attention
in the philosophical literature. We begin with the issue, raised in the preced-
ing section, concerning the status of arbitrary smooth coordinate transformations
as symmetry transformations. We then discuss various characteristics associated
with general covariance, including those pointed to by Einstein’s so-called ‘hole
argument’, before turning to the issue of whether or not general covariance has
physical content.42 We postpone discussion of Noether’s theorems to Section 7,
below.

6.1 General covariance and arbitrary coordinate transformations as
symmetry transformations

Does the principle of general covariance make any arbitrary smooth coordinate
transformation into a symmetry transformation? One way to approach this ques-
tion is to consider active rather than passive transformations (see Section 4.1,
above), and to compare the situation in GTR with that in STR.

In STR, a Lorentz transformation — actively construed — picks up the matter
fields and redistributes them with respect to the spacetime structure encoded in
the metric. The principle of relativity holds for such transformations because the
evolution of the matter fields in the two cases (related by the Lorentz transfor-
mation) are observationally indistinguishable: no observations, in practice or in
principle, could distinguish between the two scenarios. In GTR, active general
covariance is implemented by active diffeomorphisms on the spacetime manifold
(see [Rovelli, this vol., ch. 12, Section 4.1]). These involve transformations of not
just the matter fields, but also the metric field, in which both are redistributed
with respect to the spacetime manifold. Once again, the “two cases” are observa-
tionally “indistinguishable”, but this time the reason generally given is that the
“two cases” are in fact just one case.43

Why should we accept that there are two genuinely distinct cases when consider-
ing the Lorentz transformations in STR, and only one case for the diffeomorphisms
of GTR? One approach would be to claim that a crucial difference between the
two is that a Lorentz transformation can be implemented on an effectively iso-
lated sub-system of the matter fields, producing an observably distinct scenario in

41For detailed presentation of the Special and General Theories of Relativity, see [Malament,
this vol., ch. 3]. See also [Rovelli, this vol., ch 12, Section 4].

42See also [Belot, this vol., ch. 2].
43See also Section 6.2, penultimate paragraph.
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which, nevertheless, the evolution of the sub-system in question is indistinguish-
able assuming no reference is made to matter fields outside that subsystem. For
example, in Galileo’s famous ship experiment we consider two observably distinct
scenarios — one in which the ship is at rest with respect to the shore, and one
in which it moves uniformly with respect to the shore — and we notice that the
behaviour of physical systems within the cabin of the ship does not distinguish
between the two scenarios.44 No analogue of the Galilean ship experiment can be
generated for the general covariance of GTR.45

The importance of symmetry transformations being implementable to produce
observationally distinct scenarios has been emphasized by Kosso [2000]. On this
view, the observational significance of symmetry transformations rests on a combi-
nation of two observations being possible in principle. First, it must be possible to
confirm empirically the implementation of the transformation — hence the impor-
tance of being able to generate an observationally distinguishable scenario through
the transformation of a subsystem. Second, we must be able to observe that the
subsequent internal evolution of the subsystem is unaffected. That we cannot meet
the first of these requirements for arbitrary smooth coordinate transformations in
GTR marks a difference between these and the Lorentz transformations.46

On this approach, while the field equations of GTR take the same form for any
choice of coordinate system, this is not sufficient for arbitrary coordinate trans-
formations to be symmetries. In addition, the actively construed transformations
must have a physical interpretation — we must be transforming one thing with
respect to something else. When we perform a diffeomorphism, we get back the
same solution, not a new solution, for we are not re-arranging the matter fields
with respect to the metric.

We stress that this is only one way to approach the issue of whether general
covariance should be understood as a symmetry principle in GTR. A contrasting
position may be found in [Anderson, 1967, Section 10-3], who argues that we must
understand Einstein as viewing general covariance as a symmetry requirement,
and attempts to spell out the conditions under which it can function as such.

44This implementation can be only approximate, relying on the degree to which the subsystem
in question can be isolated from the “external” matter fields.

45One suggestion might be that we perform a transformation T which is the identity outside
some region R, and which differs from the identity within that region. This will not achieve the
desired result. The two scenarios must have observationally distinct consequences, at least in
principle. In the case of Galileo’s ship, if we allow the subsystem to interact with other matter
once again, we will see that in one case the ship crashes into rocks (for example), while in the
other it suffers no such collision. Thus, we have observational distinguishability in principle.
The transformation T does not produce a scenario which any future events could enable us to
distinguish from the original.

46Indeed, this result applies generally to local versus global symmetries. See also [Brading and
Brown, 2004].
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6.2 Characteristics of generally covariant theories

Any generally covariant theory will possess certain characteristics that are philo-
sophically noteworthy. First, there will be a prima facie problem with causality
and determinism within the theory, and second, there will be constraints on the
specification of the initial data. Einstein recognized aspects of the first character-
istic while he was searching for his theory of gravitation, maintaining from 1913
through until the fall of 1915 that his so-called ‘hole argument’ provided grounds
for concluding that no generally covariant theory could be physically acceptable.

In the ‘hole argument’, Einstein considers a region of spacetime in which there
are no matter fields (the “hole”), and then shows that in a generally covariant
theory no amount of data about the values of the matter and gravitational fields
outside the hole is sufficient to uniquely determine the values of the gravitational
field inside the hole. From this, Einstein concluded that no generally covariant
theory could be physically acceptable.47

The context to bear in mind here is that Einstein was searching for a theory in
which the matter fields plus the field equations would uniquely determine the met-
ric.48 In the summer of 1915 Einstein lectured on relativity theory in Göttingen
where his audience included David Hilbert. If we assume that Einstein’s presen-
tation included a version of his ‘hole argument’, then we can reasonably infer that
Hilbert was quick to reinterpret the issue that the ‘hole argument’ points to, and
to present the problem raised for generally covariant theories in terms of whether
such theories permit well-posed Cauchy problems.49

In the years immediately following the advent of GTR, Hilbert played a cen-
tral role in spelling out the problems of causality and determinism faced by any
generally covariant theory. He pointed out that in any such theory, including
GTR, there will be four fewer field equations than there are variables, leading to a
mathematical underdetermination in the theory. As Hilbert stressed, the Cauchy
problem is not well-posed: given a specification of initial data, the field equations
do not determine a unique evolution of the variables.

We can see the connection between the underdetermination problem and gen-
eral covariance as follows. For the Cauchy problem to be well-posed, we must be
able to express the second time derivatives of the metric in terms of the initial data
(plus the further spatial derivatives that can be calculated from the initial data).
However, if we re-express the 10 (source-free) Einstein field equations Gµν = 0
so as to explicitly display all the terms containing the second time derivative of
the metric, we see that we have ten equations for six unknowns gij,00, the remain-
ing four second time derivatives gµ0,00 failing to appear in the equations.50 This

47For presentation and discussion of the ‘hole argument’, see Norton [1984, 286–291] and [1993,
Sections 1-3], Stachel [1993], and Ryckman [2005, Section 2.2.2]. See also [Rovelli, this vol., ch.
12, Section 4.1.1].

48For more on Einstein’s (mis)appropriation of Mach’s principle, see [Barbour, 2005].
49Brading and Ryckman [2007]; see also [Brown and Brading, 2002, especially Section IV].
50See [Adler, Bazin and Schiffer, 1975, ch. 8] for details of the over- and under-determination

issues.
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is a direct consequence of general covariance: we can always make a coordinate
transformation in the neighborhood of the initial data surface such that the met-
ric components and their first derivatives are unchanged, while the second time
derivatives gµ0,00 vanish on that surface. Thus the field equations, which must be
valid in all coordinate systems, cannot possibly contain information on the second
time derivatives. The initial data do not determine the metric uniquely: there are
four arbitrary functions gµ0,00 that we are free to choose.

Today, it is customary to assert from the outset that solutions of Einstein’s
field equations differing only in the choice of these four arbitrary functions are
physically equivalent.51 But here we should note that this “gauge freedom” in-
terpretation of general covariance leads to problems of its own.52 For example,
within this framework the observables of the theory must be “gauge invariant”
quantities, but such quantities have (to date) turned out to be far removed from
anything “observable” in the operational sense. The gauge freedom interpretation
of general covariance is sometimes accompanied by the view that this freedom
— and therefore general covariance itself — lacks physical content. We turn to
consider this issue in Section 6.3, below.

In our explanation of the underdetermination problem, above, we noted that the
Einstein equations provide ten equations for the six unknowns gij,00. The other
face of the underdetermination problem is therefore an overdetermination problem
with respect to the gij,00, and what this means is that there will be constraints
on the specification of the data on the initial hypersurface. This is the second
characteristic of all generally covariant theories that we mentioned in our opening
remarks of the current subsection. Indeed, the presence of constraint equations
is a feature shared with other theories with a local symmetry structure, such as
electromagnetism. Philosophically, the significance lies in the relationship between
the theory and the initial data. In the seventeenth century Descartes wrote a story
of a world created in a state of disorder from which, by the ordinary operation of
the laws of nature, a world seemingly similar to our own emerged.53 This image
of the world emerging from an initial chaos has a long history, of course, but
the emergence of order by means of the operation of the laws of nature offered
a novel twist to the tale. It involves the separation of initial conditions, which
could be anything, from the subsequent law-governed evolution of the cosmos. In
modern terms, this is a theory without constraints: the theory determines which
properties of a system must be specified in order to give adequate initial data,
but we are then free to assign whatever values we please to these properties;
the equations of the theory are used to evolve that data forwards in time. A
theory with constraints, by contrast, contains two types of equations: constraint
equations that must be satisfied by the initial data, as well as evolution equations.

51Recall the discussion of Section 6.1, above.
52See [Belot, this vol., ch. 2].
53Written around 1633, Le Monde was not published in Descartes’s lifetime. For an English

translation see Descartes [1998]. The “order out of disorder” story is in the Treatise on Light,
chs. 6 and 7. Whether the ordinary operation of the laws of nature was sufficient to bring order
out of chaos became a much-disputed issue.
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In GTR, four of the ten field equations connect the curvature of the initial data
hypersurface with the distribution of mass–energy on that hypersurface, and the
remaining six field equations are evolution equations. To sum up, in a theory with
constraints, the initial “disorder” cannot be so disordered after all, but must itself
satisfy constraints set down by the laws of the theory.

6.3 Does general covariance have any physical significance?

As we saw in Section 5, Einstein treated general covariance as a symmetry prin-
ciple guiding the search that produced his General Theory of Relativity. There is
no doubt that general covariance proved a useful heuristic for Einstein, but there
remains an ongoing dispute over whether general covariance in fact has any phys-
ical significance. The issue was forcefully raised by Kretschmann already in 1917.
The thrust of the argument, which continues to reverberate today, is that any the-
ory can be given a generally covariant formulation given sufficient mathematical
ingenuity, and therefore the principle of general covariance places no restrictions
on the physical content of a theory. Indeed, Norton [2003] begins his discussion
of the issue by claiming that this negative view of general covariance has become
mainstream, before going on to give an alternative viewpoint (see below).

It seems clear to us that the characteristic features of generally covariant theories
discussed above may, in some theories at least (including GTR), be far from trivial,
and that the mainstream view — which would indeed render these issues trivial
— should be opposed. Those wishing to oppose the mainstream view adopt a two-
step general strategy: first, show under what conditions general covariance places
a restriction on the physical content of a theory; and second, demonstrate what
those implications for physical content consist in. Thus, the general mathematical
point that any theory can be put into generally covariant form is conceded, but
the implication that general covariance is therefore necessarily physically vacuous
is resisted by attention to the manner in which general covariance is implemented
in a given theory or class of theories.

For example, Anderson [1967], Ohanian and Ruffini [1994], Norton [2003], and
Earman [2006] each attempt to explain under what conditions the purely mathe-
matical feature of general covariance comes to have physical bite.54 Anderson dis-
tinguishes between the symmetries of a theory (which have physical significance)
and the covariance group of the equations (which need not). Anderson is the clas-
sic reference for the distinction between “absolute” and “dynamical” objects,55

54See also [Norton, 1993, especially Section 5], and [Rovelli, this vol., ch. 12, Section 4.1.3].
55It has proved difficult to make the distinction between absolute and dynamical objects pre-

cise, but the intuitive idea is clear enough. Dynamical objects satisfy field equations and interact
with other objects, whereas absolute objects are not affected by the dynamical behaviour of other
fields appearing in the theory. For a careful and detailed treatment of Anderson’s approach, and
the counter-examples that have been raised, see [Pitts, 2006]. The conclusion of this paper is
that Anderson’s intuition can be made sufficiently precise to cope with all counter-examples that
have appeared in the literature to date (including one due to Pitts himself), but that there is
another example, due to Geroch, that Pitts has been unable to resolve. The debate goes on!
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and in this terminology the covariance group of the equations of a theory becomes
a symmetry group if and only if the theory contains no absolute objects. Ohanian
and Ruffini [1994] appeal to the distinction they make between invariance and co-
variance of the equations of a theory.56 Covariance, they agree, is a mathematical
feature (perhaps simply an artefact of the particular formulation of the theory at
hand); but we require not only the covariance of the equations, but also that for
any objects (with one or more components) appearing in the theory that are nev-
ertheless independent of the state of matter (such as the speed of light, Planck’s
constant, etc.), their value should be unchanged by the general coordinate trans-
formations. Norton [2003] emphasizes the role of physical considerations in fixing
the content of a theory such that this restricts the formal games that we can play.
Earman [2006] begins by taking pains to emphasize the distinction between the
‘mere co-ordinate freedom’ (associated with arbitrary coordinate transformations,
passively construed) and ‘the substantive demand that diffeomorphism invariance
is a gauge symmetry of the theory at issue’. That is to say, he reminds us that the
issue at stake is not our ability to re-write a theory in generally covariant form (it
is conceded that this is something we can always do, given sufficient mathematical
ingenuity), but the relationship between the physical situations that are related by
diffeomorphisms, i.e. by (active) point transformations (see Section 6.1, above).
‘Substantive general covariance’ holds when diffeomorphically related models of
the theory represent different descriptions of the same physical situation. The
claim is that GTR satisfies substantive general covariance whereas generally co-
variant formulations of such theories as STR need not, and the goal is to show
that this requirement provides demarcation between theories in which general co-
variance represents a physically significant property of the theory, and those in
which it does not.57

Thus, Anderson, Ohanian and Ruffini, Norton, and Earman each seek to add
bite to the “merely mathematical” requirement of general covariance by placing
conditions on the manner in which it is implemented in the theory. Once these
requirements are added, various consequences follow for the content of the theory,
such as that the metric be a dynamical object. In each case, the aim is to elevate
general covariance as implemented in GTR to a symmetry principle.58

Considerations of the significance of general covariance in theories of gravitation
led to the formulation of three theorems important for the general interpretation
of symmetries in physics. These theorems are due to Emmy Noether and Felix
Klein, and will be discussed in the following section.

56See Section 4.1.
57One important tool for distinguishing genuine ‘gauge theories’ from those in which the local

symmetry in question is merely formal is Noether’s second theorem; see Section 7, below.
58Brown and Brading [2002] attempt to analyze in more detail, by means of Noether’s theorems

(see Section 7, below), what additional conditions must be added to general covariance in order
to arrive at specific aspects of the content of GTR.
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7 NOETHER’S THEOREMS

Any discussion of the significance of symmetries in physics would be incomplete
without mention of Noether’s theorems. These theorems relate symmetry proper-
ties of theories to other important properties, such as conservation laws.

Within physics, the term ‘Noether’s theorem’ is most frequently associated with
a connection between global continuous symmetries and conserved quantities. Fa-
miliar examples from classical mechanics include the connections between: spatial
translations and conservation of linear momentum; spatial rotations and conser-
vation of angular momentum; and time translations and conservation of energy.
In fact, this theorem is the first of two theorems presented in her 1918 paper
‘Invariante Variationsprobleme’.59

Before stating the two theorems, we begin with the following cautionary remark.
The connection between variational symmetries (connected to the invariance of the
action, and in terms of which Noether’s theorems are formulated) and dynamical
symmetries (concerning the dynamical laws, which is the topic of our discussion
here) is subtle (see [Olver, 1993, ch. 4]). Noether herself never addressed the
connection, and never used the word ‘symmetry’ in her paper. She discusses
integrals mathematically analogous to (but generalizations of) the action integrals
of Lagrangian physics, and uses variational techniques and group theory to elicit
a pair-wise correspondence between variational symmetries of the integral and a
set of identities.

Noether then proves two theorems, the first for the case where the variational
symmetry group depends on constant parameters, and the second for the case
where the variational symmetry group depends on arbitrary functions of the vari-
ables.60 In the following statement of her theorems we use the term ‘Noether
symmetry’ to refer to a symmetry of the field equations for which the change in
the action arising from the infinitesimal symmetry transformation is at most a
surface term. Using the terminology of Section 4.2, the first type of symmetry
then corresponds to a global dynamical symmetry, and the second to a local one.
We state the theorems in a form appropriate to Lagrangian field theory; Noether’s
own statement of the theorems involves no such specialization. For discussion
of the first theorem in the context of finite-dimensional classical mechanics see
[Butterfield, this vol., ch. 2, Section 2.1.3]. We state the theorems so that we can
refer back to them to characterize the conceptual content, but for discussion of the
mathematical detail of their derivation and content we refer the reader elsewhere
— see especially [Olver, 1993] and [Barbashov and Nesterenko, 1983].

We can state Noether’s two theorems, for a Lagrangian density L depending on
the fields φi(x) and their first derivatives, as follows.

59For an English translation see [Noether, 1971].
60See [Brading and Brown, 2007].



1356 Katherine Brading and Elena Castellani

Noether’s first theorem

If a continuous group of transformations depending smoothly on ρ constant param-
eters ωk (k = 1, 2, ..., ρ) is a Noether symmetry group of the Euler-Lagrange equa-
tions associated with a Lagrangian L(φi, ∂µφi, xµ), then the following ρ relations
are satisfied, one for every parameter on which the symmetry group depends:61

∑

i

EL
i ξ

k
i = ∂µjµ

k . (1)

On the left-hand side we have a linear combination of Euler expressions,

EL
m ≡

∂L

∂φm
− ∂µ

(
∂L

∂φm,µ

)
(2)

where
EL

m = 0 (3)

are the Euler-Lagrange equations for the field φm. (The ξm
i depend on the partic-

ular symmetry transformations and fields under consideration, and the details are
not important for our current purposes.)

On the right-hand side we have the divergence of a current, jµ
k . When the

left-hand side vanishes, the divergence of the current is equal to zero, and this
expression can be converted into a conserved quantity subject to certain conditions.
Thus, Noether’s first theorem gives us a connection between global symmetries and
conserved quantities.62

Noether’s second theorem

If a continuous group of transformations depending smoothly on ρ arbitrary func-
tions of time and space pk(x) (k = 1, 2, ..., ρ) and their first derivatives is a Noether
symmetry group of the Euler-Lagrange equations associated with a Lagrangian
L(φi, ∂µφi, xµ), then the following ρ relations are satisfied, one for every function
on which the symmetry group depends:

∑

i

EL
i aki =

∑

i

∂ν(bνkiE
L
i ). (4)

The aki and bνki depend on the particular transformations of the fields in ques-
tion, and while again the details need not concern us here, we note for use below
that while the aki arise even when the symmetry transformation is a global trans-
formation, the bνki occur only when it is local.63 What we have here, essentially,

61Note that we are using the Einstein summation convention to sum over repeated greek
indices.

62This theorem is widely discussed. See especially [Barbashov and Nesterenko, 1983]; [Doughty,
1990]. We refer the reader to [Butterfield, this vol., ch. 2] and [Butterfield, 2006] for further
discussion of Noether’s first theorem in the context of finite-dimensional classical mechanics.

63Once again, the reader is referred to [Brading and Brown, 2007] for further details.
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is a dependency between the Euler expressions and their first derivatives. This
dependency holds as a consequence of the local symmetry used in deriving the
theorem. In the case when all the fields are dynamical (i.e. satisfy Euler-Lagrange
equations) it follows that not all the field equations are independent of one an-
other. This formal underdetermination is characteristic of theories with a local
symmetry structure.64

As Hilbert recognized in the context of generally covariant theories of grav-
itation, the underdetermination is independent of the specific form of the La-
grangian.65 In the case of General Relativity, once we specify the Lagrangian and
substitute it into (4), we arrive at the (contracted) Bianchi identities.

For Noether herself, the impetus for the paper arose from the discussions over
the status of energy conservation in generally covariant theories between Hilbert,
Klein and Einstein, during which Hilbert commented that energy conservation for
the matter fields no longer has the same status in generally covariant theories as it
had in previous (non-generally covariant) theories, because it follows independently
of the field equations for the matter fields. Noether’s two theorems can be used
to support this conjecture (see [Brading, 2005]). The discussion over the status
of energy conservation in General Relativity continues, the root of the issue being
that energy-momentum cannot, in general, be defined locally.66

Today, the significance of Noether’s results lie in their generality. Many of
the specific connections between global spacetime symmetries and their associated
conserved quantities were known before Noether’s 1918 paper, and both Einstein
and Hilbert anticipated some aspects of the second theorem in their investigations
of energy conservation during and after the development of GTR.67 However, her
systematic treatment allows us to understand that these relations do not rely on
the detailed dynamics of a particular theory, but in fact follow from the structure
of Lagrangian theories and significantly weaker stipulations than the full dynam-
ics of the theory. For example, general covariance leads to energy conservation
in GTR given satisfaction of the gravitational field equations, but independently

64Whether the dependencies expressed by the second theorem are trivial or not depends on
the status of the fields with respect to which the local symmetry holds. It is in this way that
Noether’s second theorem can be used as a tool in the attempt to demarcate ‘true gauge theo-
ries’ from theories where the local symmetry is a ‘mere mathematical artefact’ (see Section 6.3
above, and [Earman, 2006]). For a ‘true gauge theory’ the dependencies have significant physical
implications.

65[Hilbert, 1915].
66The energy-momentum conservation law in General Relativity is formulated in terms of the

vanishing of the covariant divergence of the energy-momentum tensor associated with the matter
fields. Alternatively, we can express this in terms of the vanishing of the coordinate divergence
of the energy-momentum of the matter fields plus that of the gravitational field. The latter term
falling under the divergence operator is not uniquely defined and, pertinent the issue of non-
localizability, may vanish in some coordinate systems and not in others. We can understand this
coordinate dependence by reflecting on the equivalence principle, according to which partitioning
the inertial-gravitational field to obtain a division between inertial and gravitational forces is
itself a coordinate-dependent issue. For further discussion see, for example, [Misner, Thorne and
Wheeler, 1970, 467–8], and [Wald, 1984, 70]. See also [Malament, this vol., ch. 3].

67On Einstein, see [Janssen, 2005, 75–82]; and see [Sauer, 1999] on Hilbert.
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of the detailed form of those equations, and independently of the field equations
for the matter fields (indeed, independently of whether the matter fields satisfy
Euler-Lagrange equations at all).68 Noether’s theorems are a powerful tool for in-
vestigating the structure of theories — which assumptions are required to generate
which aspects of the theory, and so forth.69

It is worthwhile mentioning a third theorem, connected with Noether’s two
theorems and derived in the same context (i.e. the study of generally covariant
theories of gravitation and conservation of energy) by Felix Klein [1918]. We call it
the ‘Boundary theorem’ for reasons associated with its method of derivation.70 As
with Noether’s second theorem, the Boundary theorem concerns local symmetries,
and results in a series of identities (termed the ‘cascade equations’ by Julia and
Silva [1998]).71 We state here a simplified version of the Boundary theorem in
which the action is left unchanged by an infinitesimal symmetry transformation
(i.e. we do not allow for the possibility of a surface term).72

The Boundary theorem (restricted form)

If a continuous group of transformations depending smoothly on ρ arbitrary func-
tions of time and space pk(x) (k = 1, 2, ..., ρ) and their first derivatives is a Noether
symmetry group73 of the Euler-Lagrange equations associated with a Lagrangian
L(φi, ∂µφi, xµ), then the following three sets of ρ relations are satisfied, one for
every parameter on which the symmetry group depends:

∑

i

∂µ(bµ
kiE

L
i ) = ∂µjµ

k (5)

∑

i

(bµ
kiE

L
i ) = jµ

k −
∑

i

[
∂ν

(
∂L

∂(∂νφi)
bµ
ki

)]
(6)

(
∂L

∂(∂µφi)
bνki

)
+
(

∂L

∂(∂νφi)
bµ
ki

)
= 0. (7)

Once again, the bνki depend on the particular transformations of the fields in
question, the details of which need not concern us here. The first identity is

68See [Brading and Brown, 2007].
69For a discussion of this in the case of general covariance, see [Brading and Brown, 2002].
70The Boundary theorem also appears in the work of Hermann Weyl, specialized to the case

of his unified field theory (see [Weyl, 1922, 287–289]; the first appearance was in the 1919 third
edition), and was published in a non-theory-specific form by Utiyama [1956; 1959].

71As with Noether’s second theorem, the Boundary theorem is a useful tool in the attempt to
demarcate ‘true gauge theories’ from theories where the local symmetry is a ‘mere mathematical
artefact’, through inspection of the identities that result from the theorem, and through the
physical significance — or otherwise — of these identities.

72For further details of the Boundary theorem, including the generalization that allows for a
surface term, see [Brading and Brown, 2007].

73The Boundary theorem is here stated in a restricted form such that the Noether symmetry
group must belong to the restricted class of such groups associated with an invariant action.
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connected to the existence of superpotentials associated with local symmetries.74
The second equation can be used to investigate the relationship between a field
and its sources. For example, in the case of classical electromagnetism, we can
investigate the relationship between the local gauge symmetry of the theory and
the condition that:

jµ = ∂νF
µν , (8)

i.e. that Maxwell’s equations with dynamical sources hold. Using the case of clas-
sical electromagnetism as our example once again, the third equation becomes the
condition that the electromagnetic tensor be antisymmetric (showing the relation-
ship between this condition and the local gauge symmetry of that theory):

Fµν + F νµ = 0. (9)

These remarks have been necessarily brief, and the reader is referred to [Bar-
bashov and Nesterenko, 1983], along with Brading and Brown [2003; 2007], for
detailed derivations and discussion of these results. The identities of the Bound-
ary theorem and of Noether’s two theorems are not all independent of one another,
and which is most useful depends on the context and the question under consider-
ation. As with Noether’s theorems, the Boundary theorem holds independently of
the specific details of the dynamical equations, and together they allow us to in-
vestigate structural features of our theories that are associated with the symmetry
properties of those theories.

8 THE INTERPRETATION OF SYMMETRIES IN CLASSICAL PHYSICS

In what follows, we begin with ‘Wigner’s hierarchy’, which has become the canon-
ical view of the relationship between symmetries, laws and events. We supplement
this with a brief discussion of the connection between symmetry and irrelevance,
and how this bears on the interpretation of the various symmetries described in
Section 4.2, above.

The general interpretation of symmetries in physical theories can adopt a num-
ber of complementary approaches. We can ask about the different roles that var-
ious symmetries play; about the epistemological, ontological or other status that
various symmetries have; and about the significance of the structures left invariant
by symmetry transformations. We end with some remarks on each of these issues.

8.1 Wigner’s hierarchy

The starting point for contemporary philosophical discussion of the status and sig-
nificance of symmetries in physics is Wigner’s 1949 paper ‘Invariance in Physical
Theory’, along with his three later papers published in 1964.75 In these papers,

74See, for example, [Trautman, 1962, 179].
75Wigner’s papers can be found in the collection Symmetries and Reflections [Wigner, 1967].
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Wigner makes the distinction mentioned above (see Section 4.2) between geomet-
rical and dynamical symmetries, which we will return to below. He also presents
his view of the hierarchy of physical knowledge, according to which symmetries
are viewed as properties of laws:

There is a strange hierarchy in our knowledge of the world around us.
Every moment brings surprises and unforeseeable events — truly the
future is uncertain. There is, nevertheless, a structure in the events
around us, that is, correlations between the events of which we take
cognizance. It is this structure, these correlations, which science wishes
to discover, or at least the precise and sharply defined correlations.
. . . We know many laws of nature and we hope and expect to discover
more. Nobody can foresee the next such law that will be discovered.
Nevertheless, there is a structure in the laws of nature which we call
the laws of invariance. This structure is so far-reaching in some cases
that laws of nature were guessed on the basis of the postulate that
they fit into the invariance structure. . . . This then, the progression
from events to laws of nature, and from laws of nature to symmetry or
invariance principles, is what I meant by the hierarchy of our knowledge
of the world around us. [Wigner, 1967, 28–30].

This view of symmetries, as properties of laws, has become canonical.

8.2 Symmetry and irrelevance

There is a general property of laws, or of the underlying events, to which symme-
tries are connected: the irrelevance of certain quantities that might otherwise be
thought to have physical significance.76 In Section 4.2 we outlined the variety of
symmetries found in physics, and in each case the symmetry is associated with a
property that is deemed irrelevant for the purposes of describing the law-governed
behaviour of a system. For example, left-right symmetry means that whether a
system is left-handed or right-handed is irrelevant to its law-governed evolution.
Famously, this symmetry is violated in the weak interaction: the law-governed
behaviour of systems turns out to be sensitive to handedness for certain processes
(see [Pooley, 2003]).

In Section 4.2 we characterized the distinction between global and local sym-
metries mathematically, in terms of the dependence on constant parameters and
arbitrary functions of time (and space) respectively. The physical meaning of this
distinction can be understood through the associated properties that are deemed
irrelevant. A global symmetry reflects the irrelevance of absolute values of a cer-
tain quantity: only relative values are relevant. So in Newtonian mechanics, for
example, spatial translation invariance holds and absolute position is irrelevant to

76For an analysis of the connection between symmetry, equivalence and irrelevance, see [Castel-
lani, 2003].
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the behaviour of systems.77 Only relative positions matter, and this is reflected
in the structure of the theory through the equations being invariant under global
spatial translations — the equations do not depend upon, or invoke, a background
structure of absolute positions.

A global symmetry is a special case of a local symmetry. A local symmetry re-
flects the irrelevance not only of absolute values, but furthermore of relative values
specified at-a-distance: only local relative values (i.e. relative values specified at a
point) are relevant. This is reflected in the structure of the theory by the equations
of motion not depending upon some background structure that determines relative
values at-a-distance (i.e. there is no global background structure associated with
the property in question).78

8.3 Roles of symmetries

The various different roles in which symmetries are invoked in physics have become
much more evident with the advent of quantum theory.79 Nevertheless, already
with the classification of crystals using their remarkable and varied symmetry
properties, we see the powerful classificatory role at work. Indeed, it was with
René-Just Haüy’s use of symmetries in this way that crystallography emerged
in 1801 as a discipline distinct from mineralogy.80 Furthermore, the heuristic
and/or normative role is clear for the principle of relativity in the construction of
both Special and General Relativity (see above, Section 5). The unificatory role,
so prominent now in the attempts to unify the fundamental forces, was already
present (although differing methodologically somewhat) in Hilbert’s attempt to
construct a generally covariant theory of gravitation and electromagnetism (see
[Sauer, 1999]) and in Weyl’s 1918 unified theory of gravitation and electromag-
netism, for example. Symmetries may also be invoked in a variety of explanatory
roles. For example, on the basis of Noether’s first theorem (see Section 7) we might
say that it is because of the translational symmetry of classical mechanics (plus

77We are considering here Newtonian mechanics, without Newton’s absolute space.
78Instead, we require the explicit appearance of a connection in our theory, which provides the

rules by which two distant objects may be brought together so that comparisons between them
may be made locally.

79The application of the theory of groups and their representations for the exploitation of
symmetries in the quantum mechanics of the 1920s represents a dramatic step-change in the
significance of symmetries in physics, with respect to both the foundations and the phenomeno-
logical interpretation of the theory. As Wigner emphasized on many occasions, one essential
reason for the ‘increased effectiveness of invariance principles in quantum theory’ [Wigner, 1967,
47] is the linear nature of the state space of a quantum physical system, corresponding to the
possibility of superposing quantum states. For details on the application of symmetries in quan-
tum physics we refer the reader to [Dickson, this vol., ch. 4, Section 3.3], [Landsman, this vol.,
ch. 5, Section 4.1], and [Halvorson, this vol., ch. 8, Section 5.2]. For philosophical discussions
see [Brading and Castellani, 2003].

80The use of discrete symmetries in crystallography continued through the nineteenth century
in the work of J. F. Hessel and A. Bravais, leading to the 32 point transformation crystal classes
and the 14 Bravais lattices. These were combined into the 230 space groups in the 1890s by E. S.
Fedorov, A. Schönflies, and W. Barlow. The theory of discrete groups continues to be important
in such fields as solid state physics, chemistry, and materials science.
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satisfaction of other conditions) that linear momentum is conserved in that theory.
Another example would be an appeal to symmetry principles as an explanation,
via Wigner’s hierarchy, for (i) aspects of the form of the laws, and thereby (ii) why
certain events occur and others do not.

8.4 Status of symmetries

Are symmetries ontological, epistemological, or methodological in status? It is
clear that symmetries have an important heuristic function, as discussed above
(Section 5) in the context of relativity. This indicates a methodological status,
something that becomes further developed within the context of quantum theory.
We can also ask whether we should attribute an ontological or epistemological
status to symmetries.

According to an ontological viewpoint, symmetries are seen as “existing in na-
ture”, or characterizing the structure of the physical world. One reason for at-
tributing symmetries to nature is the so-called geometrical interpretation of spa-
tiotemporal symmetries, according to which the spatiotemporal symmetries of
physical laws are interpreted as symmetries of spacetime itself, the “geometrical
structure” of the physical world. Moreover, this way of seeing symmetries can be
extended to non-external symmetries, by considering them as properties of other
kinds of spaces, usually known as “internal spaces”.81 The question of exactly
what a realist would be committed to on such a view of internal spaces remains
open, and an interesting topic for discussion.

One approach to investigating the limits of an ontological stance with respect
to symmetries would be to investigate their empirical or observational status: can
the symmetries in question be directly observed? We first have to address what it
means for a symmetry to be observable, and indeed whether all symmetries have
the same observational status. Kosso [2000] arrives at the conclusion that there are
important differences in the empirical status of the different kinds of symmetries.
In particular, while global continuous symmetries can be directly observed — via
such experiments as the Galilean ship experiment — a local continuous symmetry
can have only indirect empirical evidence.82

The direct observational status of the familiar global spacetime symmetries
leads us to an epistemological aspect of symmetries. According to Wigner, the
spatiotemporal invariance principles play the role of a prerequisite for the very
possibility of discovering the laws of nature: ‘if the correlations between events
changed from day to day, and would be different for different points of space, it
would be impossible to discover them’ [Wigner, 1967]. For Wigner, this conception
of symmetry principles is essentially related to our ignorance (if we could directly
know all the laws of nature, we would not need to use symmetry principles in our
search for them). Such a view might be given a methodological interpretation, ac-

81See Section 4.2, above, for the varieties of symmetry.
82See Section 6.1, above; and Brading and Brown [2003b], who argue for a different interpre-

tation of Kosso’s examples.
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cording to which such spatiotemporal regularities are presupposed in order for the
enterprize of discovering the laws of physics to get off the ground.83 Others have
arrived at a view according to which symmetry principles function as “transcen-
dental principles” in the Kantian sense (see for instance [Mainzer, 1996]). It should
be noted in this regard that Wigner’s starting point, as quoted above, does not im-
ply exact symmetries — all that is needed epistemologically (or methodologically)
is that the global symmetries hold approximately, for suitable spatiotemporal re-
gions, so that there is sufficient stability and regularity in the events for the laws
of nature to be discovered.

As this discussion, and that of the preceding Subsections, indicate, the dif-
ferences between various types of symmetry become important before we have
ventured very far into interpretational issues. For this reason, much recent work
on the interpretation of symmetry in physical theory has focussed not on gen-
eral questions, such as those sketched above, but on addressing interpretational
questions specific to particular symmetries.84

8.5 Symmetries, objectivity, and objects

Turning now to the issue of the structures left invariant by symmetry transforma-
tions, the old and natural idea that what is objective should not depend upon the
particular perspective under which it is taken into consideration is reformulated in
the following group theoretical terms: what is objective is what is invariant with
respect to the relevant transformation group. This connection between symme-
tries and objectivity is something that has a long history going back to the early
twentieth century at least. It was highlighted by Weyl [1952], where he writes
that ‘We found that objectivity means invariance with respect to the group of au-
tomorphisms.’ This connection between objectivity and invariance was discussed
particularly in the context of Relativity Theory, both Special and General. We
recall Minkowski’s famous phrase ([1908] 1923, 75) that ‘Henceforth space by it-
self, and time by itself, are doomed to fade away into mere shadows, and only a
kind of union of the two will preserve an independent reality’, following his ge-
ometrization of Einstein’s Special Theory of Relativity, and the recognition of the
spacetime interval (rather than intervals of space and of time) as the geometrically
invariant quantity. The connection between objectivity and invariance in General
Relativity was discussed by, amongst others, Hilbert and Weyl, and continues to
be an issue today.85

83We are grateful to Brandon Fogel for this point, and for the comparison he suggested be-
tween this view of spatiotemporal symmetries and the methodological face of Einstein’s notion
of separability.

84These include the varieties of gauge invariance found in classical electromagnetism and in
quantum theories, along with general covariance in GTR (these being continuous symmetries),
plus the discrete symmetries of parity (violated in the weak interaction) and permutation in-
variance, both of which are found in classical theory but require reconsideration in the light of
quantum theory. See [Brading and Castellani, 2003].

85We saw above (Sections 6.2 and 6.3) some aspects of this debate in the discussion of Einstein’s
‘hole argument’ and of the status of observables in GTR.
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Related to this is the use of symmetries to characterize the objects of physics
as sets of invariants. Originally developed in the context of quantum theory,
this approach can also be applied in classical physics.86 The basic idea is that
the invariant quantities — such as mass and charge — are those by which we
characterize objects. Thus, through the application of group theory we can use
symmetry considerations to determine the invariant quantities and “construct” or
“constitute” objects as sets of these invariants.87

In conclusion, then, the philosophical questions associated with symmetries in
classical physics are wide-ranging. What we have offered here is nothing more than
an overview, influenced by our own interests and puzzles, which we hope will be
of service in further explorations of this philosophically and physically rich field.
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[Brading and Brown, 2003] K. Brading and H. R. Brown. Symmetries and Noether’s theorems.
In K. Brading and E. Castellani (eds.), pages 89-109, 2003.

[Brading and Brown, 2004] K. Brading and H. R. Brown. Are gauge symmetry transformations
observable?. British Journal for the Philosophy of Science, 55: 645-65, 2004.

[Brading and Brown, 2007] K. Brading and H. R. Brown. Noether’s theorems, gauge symmetries
and general relativity. Manuscript, 2007.

[Brading and Castellani, 2003] K. Brading and E. Castellani (eds.). Symmetry in Physics:
Philosophical Reflections. Cambridge University Press, 2003.

86See Max Born, reprinted in [Castellani, 1998].
87For further discussion see [Castellani, 1998, part II].



Symmetries and Invariances in Classical Physics 1365

[Brading and Castellani, 2006] K. Brading and E. Castellani. Curie’s Principle, Encore. In
preparation, 2006.

[Brading and Ryckman, 2007] K. Brading and T. A. Ryckman. Hilbert’s axiomatic method and
the foundations of physics: an interpretation of generally covariant physics and a revision of
Kant’s epistemology. Manuscript, 2007.

[Brown, 2006] H. Brown. Physical Relativity: Spacetime Structure from a Dynamical Perspec-
tive. Oxford University Press, 2006.

[Butterfield, 2004] J. Butterfield. Between laws and models: Some philosophical morals of La-
grangian mechanics; available at Los Alamos arXive: http://arxiv.org/abs/physics/0409030;
and at Pittsburgh archive: http://philsci-archive.pitt.edu/archive/00001937/.

[Butterfield, 2006] J. Butterfield. On symmetry and conserved quantities in classical mechan-
ics. Forthcoming in W. Demopoulos and I. Pitowsky (eds.), Festschrift for Jeffrey Bub.
Kluwer: University of Western Ontario Series in Philosophy of Science, 2006; available at
Los Alamos arXive: http://arxiv.org/abs/physics/; and at Pittsburgh archive: http://philsci-
archive.pitt.edu/archive/00002362/.

[Butterfield, 2006] J. Butterfield. On symplectic reduction in classical mechanics. This volume.
[Castellani, 1998] E. Castellani (ed.). Interpreting Bodies. Classical and Quantum Objects in

Modern Physics. Princeton University Press, 1998.
[Castellani, 2003] E. Castellani. Symmetry and equivalence. In K. Brading and E. Castellani

(eds.), pages 321-334, 2003.
[Chalmers, 1970] A. F. Chalmers. Curie’s principle. The British Journal for the Philosophy of

Science, 21: 133-148, 1970.
[Corry, 2004] L. Corry. David Hilbert and the Axiomatization of Physics (1898-1918). Dor-

drecht: Kluwer Academic, 2004.
[Curie, 1894] P. Curie. Sur la symétrie dans les phénomènes physiques. Symétrie d’un champ
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